版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆维吾尔自治区阿克苏市农一师高级中学2026届数学高一上期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.经过点(2,1)的直线l到A(1,1),B(3,5)两点的距离相等,则直线l的方程为A.2x-y-3=0 B.x=2C.2x-y-3=0或x=2 D.都不对2.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.3.已知函数(为自然对数的底数),若对任意,不等式都成立,则实数的取值范围是A. B.C. D.4.若是圆上动点,则点到直线距离的最大值A.3 B.4C.5 D.65.已知向量,且,则的值为()A.1 B.2C. D.36.函数的定义域为A. B.C. D.7.已知为第二象限角,则的值是()A.3 B.C.1 D.8.以下四组数中大小比较正确的是()A. B.C. D.9.C,S分别表示一个扇形的周长和面积,下列能作为有序数对取值的是()A. B.C. D.10.已知定义在上的偶函数,且当时,单调递减,则关于x的不等式的解集是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若一扇形的圆心角为,半径为,则该扇形的面积为__________.12.16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,数学家纳皮尔在研究天文学的过程中,为简化计算发明了对数.直到18世纪,才由瑞士数学家欧拉发现了指数与对数的互逆关系,即.现在已知,则__________13.过点且在轴,轴上截距相等的直线的方程为___________.14.由直线上的任意一个点向圆引切线,则切线长的最小值为________.15.已知集合,,则_________.16.如图,在正方体中,、分别是、上靠近点的三等分点,则异面直线与所成角的大小是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求函数的最小正周期及函数的单调递增区间;(2)求函数在上的值域18.已知向量,向量分别为与向量同向的单位向量.(Ⅰ)求向量与的夹角;(Ⅱ)求向量的坐标.19.如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF//AC,AB=,CE=EF=1(Ⅰ)求证:AF//平面BDE;(Ⅱ)求证:CF⊥平面BDE;20.已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.21.已知函数.(1)求函数的周期和单调递减区间;(2)将的图象向右平移个单位,得到的图象,已知,,求值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】当直线l的斜率不存在时,直线x=2显然满足题意;当直线l的斜率存在时,设直线l的斜率为k则直线l为y-1=kx-2,即由A到直线l的距离等于B到直线l的距离得:-kk化简得:-k=k-4或k=k-4(无解),解得k=2∴直线l的方程为2x-y-3=0综上,直线l的方程为2x-y-3=0或x=2故选C2、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.3、C【解析】由题意结合函数的单调性和函数的奇偶性求解不等式即可.【详解】由函数的解析式可知函数为定义在R上的增函数,且函数为奇函数,故不等式即,据此有,即恒成立;当时满足题意,否则应有:,解得:,综上可得,实数的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题.4、C【解析】圆的圆心为(0,3),半径为1.是圆上动点,则点到直线距离的最大值为圆心到直线的距离加上半径即可.又直线恒过定点,所以.所以点到直线距离的最大值为4+1=5.故选C.5、A【解析】由,转化为,结合数量积的坐标运算得出,然后将所求代数式化为,并在分子分母上同时除以,利用弦化切的思想求解【详解】由题意可得,即∴,故选A【点睛】本题考查垂直向量的坐标表示以及同角三角函数的基本关系,考查弦化切思想的应用,一般而言,弦化切思想应用于以下两方面:(1)弦的分式齐次式:当分式是关于角弦的次分式齐次式,分子分母同时除以,可以将分式由弦化为切;(2)弦的二次整式或二倍角的一次整式:先化为角的二次整式,然后除以化为弦的二次分式齐次式,并在分子分母中同时除以可以实现弦化切6、C【解析】要使函数有意义,需满足解得,所以函数的定义域为考点:求函数的定义域【易错点睛】本题是求函数的定义域,注意分母不能为0,同时本题又将对数的运算,交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.学生很容易忽略,造成失误,注意在对数函数中,真数一定是正数,负数和零无意义考点:求函数的定义域7、C【解析】由为第二象限角,可得,再结合,化简即可.【详解】由题意,,因为为第二象限角,所以,所以.故选:C.8、C【解析】结合指数函数、对数函数、幂函数性质即可求解详解】对A,,故,错误;对B,在第一象限为增函数,故,错误;对C,为增函数,故,正确;对D,,,故,错误;故选:C【点睛】本题考查根据指数函数,对数函数,幂函数性质比较大小,属于基础题9、B【解析】设扇形半径为,弧长为,则,,根据选项代入数据一一检验即可【详解】设扇形半径为,弧长为,则,当,有,则无解,故A错;当,有得,故B正确;当,有,则无解,故C错;当,有,则无解,故D错;故选:B10、D【解析】由偶函数的性质求得,利用偶函数的性质化不等式中自变量到上,然后由单调性转化求解【详解】解:由题意,,的定义域,时,递减,又是偶函数,因此不等式转化为,,,解得故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用扇形的面积公式可求得结果.【详解】扇形的圆心角为,因此,该扇形的面积为.故答案:.12、3【解析】由将对数转化为指数13、或【解析】当直线不过原点时设截距式方程;当直线过原点时设,分别将点代入即可【详解】由题,当直线不过原点时设,则,所以,则直线方程为,即;当直线过原点时设,则,所以,则直线方程为,即,故答案为:或【点睛】本题考查求直线方程,考查截距式方程的应用,截距相同的直线问题,需注意过原点的情况14、【解析】利用切线和点到圆心的距离关系即可得到结果.【详解】圆心坐标,半径要使切线长最小,则只需要点到圆心的距离最小,此时最小值为圆心到直线的距离,此时,故答案为:【点睛】本题考查了直线与圆的位置关系,同时考查了点到直线的距离公式,属于基础题.15、【解析】由对数函数单调性,求出集合A,再根据交集的定义即可求解.【详解】解:,,,故答案为:.16、【解析】连接,可得出,证明出四边形为平行四边形,可得,可得出异面直线与所成角为或其补角,分析的形状,即可得出的大小,即可得出答案.【详解】连接、、,,,在正方体中,,,,所以,四边形为平行四边形,,所以,异面直线与所成的角为.易知为等边三角形,.故答案为:.【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为;单调递增区间为;(2)【解析】(1)利用二倍角和辅助角公式化简得到,由解析式可确定最小正周期;令,解不等式可求得单调递增区间;(2)利用可求得的范围,对应正弦函数可确定的范围,进而得到所求值域.【详解】(1),的最小正周期;令,解得:,的单调递增区间为;(2)当时,,,,即在上的值域为.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)运用向量的数量积求解即可.(Ⅱ)先根据单位向量的概念求得,再求的坐标试题解析:(Ⅰ)因为向量,所以,,所以,又因为,所以.即向量与的夹角为(Ⅱ)由题意得,,所以即向量的坐标为19、(Ⅰ)见解析;(Ⅱ)见解析【解析】(1)设AC与BD交于点G.因为EF∥AG,且EF=1,AG=AC=1,所以四边形AGEF为平行四边形.所以AF∥EG.因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(2)连接FG.因为EF∥CG,EF=CG=1,且CE=1,所以四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.20、(1)A={0,1,2,3,4,5,6,7};(2)见解析.【解析】(Ⅰ)当q=2,n=3时,M={0,1},A={x|x=x1+x2•2+x3•22,xi∈M,i=1,2,3}.即可得到集合A;(Ⅱ)由于ai,bi∈M,i=1,2,…,n.an<bn,可得an-bn≤-1.由题意可得s-t=(a1-b1)+(a2-b2)q+…+(an-1-bn-1)qn-2+(an-bn)qn-1≤-[1+q+…+qn-2+qn-1],再利用等比数列的前n项和公式即可得出试题解析:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,xi∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}(2)证明:由s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,ai,bi∈M,i=1,2,…,n及an<bn,可得s-t=(a1-b1)+(a2-b2)q+…+(an-1-bn-1)qn-2+(an-bn)qn-1≤(q-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公楼茶水间防滑合同(企业福利2025)
- XB企业应收账款管理存在的问题与对策
- 建筑防水概述
- 2025年物业设备设施试卷及答案
- 2025年德阳统考英语真题及答案
- 2025年大庆初中考试题目及答案
- 外墙保温补修合同范本
- 内江中考政治试卷及答案
- 陕西省榆林市七校联考2024-2025学年高二上学期11月期中考试化学试题+答案
- 中铁入职合同范本
- 《药品质量管理体系内审员职业技能规范》
- 冶炼厂拆迁施工方案
- 谷物烘干机结构设计
- 新疆交通投资责任有限公司 笔试内容
- 检修安全培训内容课件
- 颅内感染指南解读
- 公路养护培训课件
- 2025年6月浙江省高考化学试卷真题(含答案及解析)
- 天车安全培训教学课件
- 2025年丹栀逍遥丸行业研究报告及未来行业发展趋势预测
- 医院清洁消毒培训
评论
0/150
提交评论