2026届浙江诸暨市牌头中学高一数学第一学期期末学业质量监测模拟试题含解析_第1页
2026届浙江诸暨市牌头中学高一数学第一学期期末学业质量监测模拟试题含解析_第2页
2026届浙江诸暨市牌头中学高一数学第一学期期末学业质量监测模拟试题含解析_第3页
2026届浙江诸暨市牌头中学高一数学第一学期期末学业质量监测模拟试题含解析_第4页
2026届浙江诸暨市牌头中学高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届浙江诸暨市牌头中学高一数学第一学期期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若实数,则函数的零点个数为()A.0 B.1C.2 D.32.下列各选项中的两个函数的图象关于y轴对称的是()A.与 B.与C.与 D.与3.长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是()A. B.C. D.都不对4.已知向量,满足,,且与的夹角为,则()A. B.C. D.5.满足的角的集合为()A. B.C. D.6.我国东汉末数学家赵爽在《周髀算经》中利用一幅“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若,则()A. B.C. D.7.若,则角的终边在A.第一象限 B.第二象限C.第三象限 D.第四象限8.若集合,则()A. B.C. D.9.已知是两相异平面,是两相异直线,则下列错误的是A.若,则 B.若,,则C.若,,则 D.若,,,则10.若,则所在象限是A.第一、三象限 B.第二、三象限C.第一、四象限 D.第二、四象限二、填空题:本大题共6小题,每小题5分,共30分。11.已知甲、乙两组数据已整理成如图所示的茎叶图,则甲组数据的中位数是___________,乙组数据的25%分位数是___________12.如图所示,正方体的棱长为1,B′C∩BC′=O,则AO与A′C′所成角的度数为________.13.设函数,若实数满足,且,则的取值范围是_______________________14.不等式的解集为_____15.已知函数(且)过定点P,且P点在幂函数的图象上,则的值为_________16.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形的三条边长分别为、、,则三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦—秦九韶公式,现有一个三角形的边长满足,,则此三角形面积的最大值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,三棱锥中,平面平面,,,(1)求三棱锥的体积;(2)在平面内经过点,画一条直线,使,请写出作法,并说明理由18.已知直线,直线经过点,且(1)求直线的方程;(2)记与轴相交于点,与轴相交于点,与相交于点,求的面积19.设函数是定义在上的奇函数,当时,(1)确定实数的值并求函数在上的解析式;(2)求满足方程的的值.20.已知.(1)若,,求x的值;(2)若,求的最大值和最小值.21.已知函数(1)求的定义域;(2)判断的奇偶性,并说明理由;(3)设,证明:

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据分段函数做出函数的图象,运用数形结合的思想可求出函数的零点的个数,得出选项.【详解】令,得,根据分段函数的解析式,做出函数的图象,如下图所示,因为,由图象可得出函数的零点个数为3个,故选:D.【点睛】本题考查函数零点,考查学生分析解决问题的能力,关键在于做出函数的图象,运用数形结合的思想得出零点个数,属于中档题.多选题2、A【解析】根据题意,逐一分析各选项中两个函数的对称性,再判断作答.【详解】对于A,点是函数图象上任意一点,显然在的图象上,而点与关于y轴对称,则与的图象关于y轴对称,A正确;对于B,点是函数图象上任意一点,显然在的图象上,而点与关于原点对称,则与的图象关于原点对称,B不正确;对于C,点是函数图象上任意一点,显然在的图象上,而点与关于x轴对称,则与的图象关于x轴对称,C不正确;对于D,点是函数图象上任意一点,显然在的图象上,而点与关于直线y=x对称,则与的图象关于直线y=x对称,D不正确.故选:A3、B【解析】由题意长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积【详解】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:故选:4、A【解析】根据向量的数量积运算以及运算法则,直接计算,即可得出结果.【详解】因为,,且与的夹角为,所以,因此.故选:A.5、D【解析】利用正弦函数的图像性质即可求解.【详解】.故选:D.6、B【解析】由题,根据向量加减数乘运算得,进而得.【详解】解:因为在“赵爽弦图”中,若,所以,所以,所以,所以.故选:B7、C【解析】直接由实数大小比较角的终边所在象限,,所以的终边在第三象限考点:考查角的终边所在的象限【易错点晴】本题考查角的终边所在的象限,不明确弧度制致误8、C【解析】根据交集定义即可求出.【详解】因为,所以.故选:C.9、B【解析】利用位置关系的判定定理和性质定理逐项判断后可得正确的选项.【详解】对于A,由面面垂直的判定定理可知,经过面的垂线,所以成立;对于B,若,,不一定与平行,不正确;对于C,若,,则正确;对于D,若,,,则正确.故选:B.10、A【解析】先由题中不等式得出在第二象限,然后求出的范围,即可判断其所在象限【详解】因为,,所以,故在第二象限,即,故,当为偶数时,在第一象限,当为奇数时,在第三象限,即所在象限是第一、三象限故选A.【点睛】本题考查了三角函数的象限角,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、①.45②.35【解析】利用中位数的概念及百分位数的概念即得.【详解】由题可知甲组数据共9个数,所以甲组数据的中位数是45,由茎叶图可知乙组数据共9个数,又,所以乙组数据的25%分位数是35.故答案为:45;35.12、30°【解析】∵A′C′∥AC,∴AO与A′C′所成的角就是∠OAC(或其补角).∵OC⊂平面BB′C′C,AB⊥平面BB′C′C,∴OC⊥AB.又OC⊥OB,AB∩BO=B,∴OC⊥平面ABO.又AO⊂平面ABO,∴OC⊥OA.在Rt△AOC中,,∴∠OAC=30°.即AO与A′C′所成角度数为30°.点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角13、【解析】结合图象确定a,b,c的关系,由此可得,再利用基本不等式求其最值.【详解】解:因为函数,若实数a,b,c满足,且,;如图:,且;令;因为;,当且仅当时取等号;,;故答案为:14、【解析】把不等式x2﹣2x>0化为x(x﹣2)>0,求出解集即可【详解】不等式x2﹣2x>0可化为x(x﹣2)>0,解得x<0或x>2;∴不等式的解集为{x|x<0或x>2}故答案为【点睛】本题考查了一元二次不等式的解法与应用问题,是基础题目15、9【解析】由指数函数的性质易得函数过定点,再由幂函数过该定点求解析式,进而可求.【详解】由知:函数过定点,若,则,即,∴,故.故答案为:9.16、【解析】计算得出,利用海伦—秦九韶公式可得出,利用基本不等式可求得的最大值.【详解】,所以,.当且仅当时,等号成立,且此时三边可以构成三角形.因此,该三角形面积的最大值为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】(1)取的中点,连接,因为,所以,由面面垂直的性质可得平面,求出的值,利用三角形面积公式求出底面积,从而根据棱锥的条件公式可得三棱锥的体积;(2)在平面中,过点作,交于点,在平面中,过点作,交于点,连结,则直线就是所求的直线,根据作法,利用线面垂直的判定定理与性质可证明.试题解析:(1)取的中点,连接,因为,所以,又因为平面平面,平面平面,平面,所以平面,因为,,所以,因为,所以的面积,所以三棱锥的体积(2)在平面中,过点作,交于点,在平面中,过点作,交于点,连结,则直线就是所求的直线,由作法可知,,又因为,所以平面,所以,即18、(1);(2)【解析】(1)根据两条直线垂直的斜率关系可得直线的斜率,代入求得截距,即可求得直线的方程.(2)根据题意分别求得的坐标,可得的长,由的纵坐标即可求得的面积【详解】(1)由题意,则两条直线的斜率之积为即直线的斜率为因为,所以可设将代入上式,解得即(2)在直线中,令,得,即在直线:中,令,得,即解方程组,得,,即则底边的长为,边上的高为故【点睛】本题考查了直线与直线垂直的斜率关系,直线与轴交点坐标,直线的交点坐标求法,属于基础题.19、(1),(2)或或【解析】(1)利用奇函数定义即可得到的值及函数在上的解析式;(2)分成两类,解指数型方程即可得到结果.【详解】(1)是定义在上的奇函数当时,,当时,设,则(2)当时,,令,得得解得是定义在上的奇函数所以当x<0时的根为:所以方程的根为:【点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围20、(1)或;(2)的最大值和最小值分别为:,.【解析】(1)利用三角恒等变换化简函数,再利用给定的函数值及x的范围求解作答.(2)求出函数相位的范围,再结合正弦函数的性质计算作答.【小问1详解】依题意,,由,即得:,而,即,于是得或,解得或,所以x的值是或.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论