版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省孝感市普通高中联考协作体高二数学第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在递增等比数列中,为其前n项和.已知,,且,则数列的公比为()A.3 B.4C.5 D.62.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数1,3,6,10,…构成的数列的第n项,则的值为()A.1225 B.1275C.1326 D.13623.一道数学试题,甲、乙两位同学独立完成,设命题是“甲同学解出试题”,命题是“乙同学解出试题”,则命题“至少一位同学解出试题”可表示为()A. B.C. D.4.已知两个向量,若,则的值为()A. B.C.2 D.85.设函数,则下列函数中为奇函数的是()A. B.C. D.6.在数列中,若,则称为“等方差数列”,下列对“等方差数列”的判断,其中不正确的为()A.若是等方差数列,则是等差数列 B.若是等方差数列,则是等方差数列C.是等方差数列 D.若是等方差数列,则是等方差数列7.命题“,”的否定是()A., B.,C, D.,8.某机构通过抽样调查,利用列联表和统计量研究患肺病是否与吸烟有关,计算得,经查对临界值表知,,现给出四个结论,其中正确的是()A.因为,故有90%的把握认为“患肺病与吸烟有关"B.因为,故有95%把握认为“患肺病与吸烟有关”C.因为,故有90%的把握认为“患肺病与吸烟无关”D.因为,故有95%的把握认为“患肺病与吸烟无关”9.设函数是奇函数的导函数,且,当时,,则不等式的解集为()A. B.C. D.10.甲,乙、丙、丁、戊共5人随机地排成一行,则甲、乙相邻,丙、丁不相邻的概率为()A. B.C. D.11.将上各点的纵坐标不变,横坐标变为原来的2倍,得到曲线C,若直线l与曲线C交于A,B两点,且AB中点坐标为M(1,),那么直线l的方程为()A. B.C. D.12.等比数列,,,成公差不为0的等差数列,,则数列的前10项和()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某班有位同学,将他们从至编号,现用系统抽样的方法从中选取人参加文艺演出,抽出的编号从小到大依次排列,若排在第一位的编号是,那么第四位的编号是______14.已知,,若x,a,b,y成等比数列,x,c,d,y成等差数列,则的最小值为_____________.15.已知数列的各项均为正数,记为的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立①数列是等差数列:②数列是等差数列;③注:若选择不同的组合分别解答,则按第一个解答计分16.已知命题“,”为假命题,则实数m的取值范围为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD//BC,AB=BC=CD=1,AD=2,直线BC与平面PCD所成角的正弦值为.(1)求证:平面PCD⊥平面PAC;(2)求平面PAB与平面PCD所成锐二面角的余弦值.18.(12分)已知直线与双曲线交于,两点,为坐标原点(1)当时,求线段的长;(2)若以为直径的圆经过坐标原点,求的值19.(12分)已知椭圆过点,离心率为.(1)求椭圆的方程;(2)过点作直线,与直线和椭圆分别交于两点,(与不重合).判断以为直径的圆是否过定点,如果过定点,求出定点坐标;如果不过定点,说明理由.20.(12分)在数列中,,且成等比数列(1)证明数列是等差数列,并求的通项公式;(2)设数列满足,其前项和为,证明:21.(12分)在平面直角坐标系中,有一条长度为3的线段,端点,分别在轴、轴上运动,为线段上一点,且.(1)求点的轨迹的方程;(2)已知不过原点的直线与相交于,两点,且线段始终被直线平分.求的面积取最大时直线的方程.22.(10分)如图,在四棱锥中,平面ABCD,,,且,,.(1)求证:平面PAC;(2)已知点M是线段PD上的一点,且,当三棱锥的体积为1时,求实数的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由已知结合等比数列的性质可求出、,然后结合等比数列的求和公式求解即可.【详解】解:由题意得:是递增等比数列又,,故故选:B2、B【解析】观察前4项可得,从而可求得结果【详解】由题意可得,……,观察规律可得,所以,故选:B3、D【解析】根据“或命题”的定义即可求得答案.【详解】“至少一位同学解出试题”的意思是“甲同学解出试题,或乙同学解出试题”.故选:D.4、B【解析】直接利用空间向量垂直的坐标运算计算即可.【详解】因为,所以,即,解得.故选:B5、A【解析】求出函数图象的对称中心,结合函数图象平移变换可得结果.【详解】因为,所以,,所以,函数图象的对称中心为,将函数的图象向右平移个单位,再将所得图象向下平移个单位长度,可得到奇函数的图象,即函数为奇函数.故选:A6、B【解析】根据等方差数列的定义逐一进行判断即可【详解】选项A中,符合等差数列的定义,所以是等差数列,A正确;选项B中,不是常数,所以不是等方差数列,选项B错误;选项C中,,所以是等方差数列,C正确;选项D中,所以是等方差数列,D正确故选:B7、D【解析】由含量词命题否定的定义,写出命题的否定即可【详解】命题“,”的否定是:,,故选:D.8、A【解析】根据给定条件利用独立性检验的知识直接判断作答.【详解】因,且,由临界值表知,,,所以有90%的把握认为“患肺病与吸烟有关”,则A正确,C不正确;.因临界值3.841>3.305,则不能确定有95%的把握认为“患肺病与吸烟有关”,也不能确定有95%的把握认为“患肺病与吸烟无关”,即B,D都不正确.故选:A9、D【解析】设,则,分析可得为偶函数且,求出的导数,分析可得在上为减函数,进而分析可得上,,在上,,结合函数的奇偶性可得上,,在上,,又由即,则有或,据此分析可得答案【详解】根据题意,设,则,若奇函数,则,则有,即函数为偶函数,又由,则,则,,又由当时,,则在上为减函数,又由,则在上,,在上,,又由为偶函数,则在上,,在上,,即,则有或,故或,即不等式的解集为;故选:D10、A【解析】先求出所有的基本事件,再求出甲、乙相邻,丙、丁不相邻的基本事件,根据古典概型的概率公式求解即可【详解】甲,乙、丙、丁、戊共5人随机地排成一行有种方法,甲、乙相邻,丙、丁不相邻的排法为先将甲、乙捆绑在一起,再与戊进行排列,然后丙、丁从3个空中选2个空插入,则共有种方法,所以甲、乙相邻,丙、丁不相邻的概率为,故选:A11、A【解析】先根据题意求出曲线C的方程,然后利用点差法求出直线l的斜率,从而可求出直线方程【详解】设点为曲线C上任一点,其在上对应在的点为,则,得,所以,所以曲线C的方程为,设,则,两方程相减整理得,因为AB中点坐标为M(1,),所以,即,所以,所以,所以直线l的方程为,即,故选:A12、C【解析】先设等比数列的公比为,结合条件可知,由等差中项可知,利用等比数列的通项公式进行化简求出,最后利用分组求和法,以及等比数列、等差数列的求和公式,即可求出数列的前10项和.【详解】设等比数列的公比为,,,成公差不为0的等差数列,则,,都不相等,,且,,,,即,解得:或(舍去),,所以数列的前10项和:.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、29【解析】根据给定信息利用系统抽样的特征直接计算作答.【详解】因系统抽样是等距离抽样,依题意,相邻两个编号相距,所以第四位的编号是.故答案为:2914、4【解析】根据等差数列和等比数列性质把用表示,然后由基本不等式得最小值【详解】由题意,,所以,当且仅当时等号成立故答案为:415、证明过程见解析【解析】选①②作条件证明③时,可设出,结合的关系求出,利用是等差数列可证;也可分别设出公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系,进行证明.选①③作条件证明②时,根据等差数列的求和公式表示出,结合等差数列定义可证;选②③作条件证明①时,设出,结合的关系求出,根据可求,然后可证是等差数列;也可利用前两项的差求出公差,然后求出通项公式,进而证明出结论.【详解】选①②作条件证明③:[方法一]:设,则,当时,;当时,;因为也是等差数列,所以,解得;所以,,故.[方法二]:设等差数列的公差为d,等差数列的公差为,则,将代入,化简得对于恒成立则有,解得.所以选①③作条件证明②:因为,是等差数列,所以公差,所以,即,因为,所以是等差数列.选②③作条件证明①:[方法一]:设,则,当时,;当时,;因为,所以,解得或;当时,,当时,满足等差数列的定义,此时为等差数列;当时,,不合题意,舍去.综上可知为等差数列.[方法二]【最优解】:因为,所以,,因为也为等差数列,所以公差,所以,故,当时,,当时,满足上式,故的通项公式为,所以,,符合题意.【整体点评】这类题型在解答题后可证是等差数列;法二:利用是等差数列即前两项的差求出公差,然后求出的通项公式,利用,求出的通项公式,进而证明出结论.16、【解析】根据命题的否定与原命题真假性相反,即可得到,为真命题,则,从而求出参数的取值范围;【详解】解:因为命题“,”为假命题,所以命题“,”为真命题,所以,解得;故答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)取的中点,连接,证明,由线面垂直的判定定理可证明平面,再利用面面垂直的判定定理可证得结论,(2)过点作于,以为原点,建立空间直角坐标系,如图所示,设,先根据直线BC与平面PCD所成角的正弦值为,求出,然后再求出平面PAB的法向量,利用向量的夹角公式可求得结果【小问1详解】证明:取的中点,连接,因为AD//BC,AB=BC=CD=1,AD=2,所以,∥,所以四边形为平行四边形,所以,所以,因为平面,平面,所以,因为,所以平面,因为平面,所以平面平面,【小问2详解】过点作于,以为原点,建立空间直角坐标系,如图所示,在等腰梯形中,AD//BC,AB=BC=CD=1,AD=2,则,所以设因为平面,所以所以,设平面的法向量为,则,令,则,因为直线BC与平面PCD所成角的正弦值为,所以,解得,所以,,设平面的法向量为,因为,所以,令,则,所以,所以平面PAB与平面PCD所成锐二面角的余弦值为18、(1)(2)【解析】(1)联立直线方程和双曲线方程,利用弦长公式可求弦长.(2)根据圆过原点可得,设,从而,联立直线方程和双曲线方程后利用韦达定理化简前者可得所求的参数的值.【小问1详解】当时,直线,设,由可得,此时,故.【小问2详解】设,因为以为直径的圆经过坐标原点,故,故,由可得,故且,故.而可化为即,因为,所以,解得,结合其范围可得.19、(1)(2)过定点,定点为【解析】(1)根据离心率及顶点坐标求出即可得椭圆方程;(2)当直线斜率存在时,设直线的方程为(),求出的坐标,设是以为直径的圆上的点,利用向量垂直可得恒成立,可得定点,斜率不存在时验证即可.【小问1详解】由题意得,,,又因为,所以.所以椭圆C的方程为.【小问2详解】以为直径的圆过定点.理由如下:当直线斜率存在时,设直线的方程为().令,得,所以.由得,则或,所以.设是以为直径的圆上的任意一点,则,.由题意,,则以为直径的圆的方程为.即恒成立即解得故以为直径的圆恒过定点.当直线斜率不存在时,以为直径的圆也过点.综上,以为直径的圆恒过定点.20、(1)证明见解析;;(2)证明见解析【解析】(1)利用已知条件推出数列是等差数列,其公差为,首项为1,求出通项公式,结合由,,成等比数列,转化求解即可.(2)化简通项公式,利用裂项消项法,求解数列的和即可【详解】证明:(1)由,得,即,所以数列是等差数列,其公差为,首项为1,因此,,,由成等比数列,得,即,解得或(舍去),故(2)因为,所以因为,所以【点睛】方法点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②;③;④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.21、(1)(2)【解析】(1)设,根据题意可得,,利用两点之间的距离公式表示出,化简即可得出结果;(2)设,,线段的中点为,利用两点坐标表示直线斜率的公式和点差法求出直线的斜率,设的方程为,联立椭圆方程并消去y得到关于x的一元二次方程,根据韦达定理表示、进而得出弦长,利用点到直线的距离公式求出原点到的距离,结合基本不等式计算即可.【小问1详解】设,由为线段上一点,且,得,,又,则,整理可得,所以轨迹的方程为;【小问2详解】设,,线段的中点为.∵在直线上,∴,∵A,在轨迹上,∴两式相减,可得,∴,即直线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基础会计选择题目及答案
- 办公软件授权协议(2025年使用权)
- 2025年河北省公需课学习-环境保护税征收管理实务487
- 2025年湖南各市遴选真题及答案
- 考试常考题型试卷及答案
- 人大企管复试真题及答案
- 企业招聘管理真题及答案
- 外汇买卖合同范本
- 2025年专四语法知识题库及答案
- 金融入职笔试题库及答案
- 珠海市纪委监委公开招聘所属事业单位工作人员12人考试题库附答案
- 2025内蒙古鄂尔多斯东胜区消防救援大队招聘乡镇(街道)消防安全服务中心专职工作人员招聘3人考试笔试模拟试题及答案解析
- 2025济宁市检察机关招聘聘用制书记员(31人)笔试考试参考试题及答案解析
- 2025年安全总监年终总结报告
- 安顺市人民医院招聘聘用专业技术人员笔试真题2024
- 厨师专业职业生涯规划与管理
- 2025年10月自考00688设计概论试题及答案
- 六西格玛设计实例
- 海南槟榔承包协议书
- 工业交换机产品培训
- 2025浙江温州市龙港市国有企业招聘产业基金人员3人笔试历年备考题库附带答案详解试卷3套
评论
0/150
提交评论