黑龙江省佳木斯市建三江一中2026届数学高二上期末检测模拟试题含解析_第1页
黑龙江省佳木斯市建三江一中2026届数学高二上期末检测模拟试题含解析_第2页
黑龙江省佳木斯市建三江一中2026届数学高二上期末检测模拟试题含解析_第3页
黑龙江省佳木斯市建三江一中2026届数学高二上期末检测模拟试题含解析_第4页
黑龙江省佳木斯市建三江一中2026届数学高二上期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省佳木斯市建三江一中2026届数学高二上期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点且斜率为的直线方程为()A. B.C D.2.已知平面的一个法向量为=(2,-2,4),=(-1,1,-2),则AB所在直线l与平面的位置关系为()A.l⊥ B.C.l与相交但不垂直 D.l∥3.已知圆:,点是直线:上的动点,过点引圆的两条切线、,其中、为切点,则直线经过定点()A. B.C. D.4.在区间内随机取一个数,则方程表示焦点在轴上的椭圆的概率是A. B.C. D.5.在数列中,,则等于A. B.C. D.6.德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时认识到,求曲线的切线的斜率依赖于纵坐标的差值和横坐标的差值,以及当此差值变成无限小时它们的比值,这也正是导数的几何意义.设是函数的导函数,若,且对,,且总有,则下列选项正确的是()A. B.C. D.7.设R,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.酒驾是严重危害交通安全的违法行为.根据国家有关规定:100血液中酒精含量在20~80之间为酒后驾车,80及以上为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量会以每小时20%的速度减少,若他想要在不违法的情况下驾驶汽车,则至少需经过的小时数约为()(参考数据:,)A.6 B.7C.8 D.99.在正方体ABCD﹣A1B1C1D1中,E为棱A1B1上一点,且AB=2,若二面角B1﹣BC1﹣E为45°,则四面体BB1C1E的外接球的表面积为()A.π B.12πC.9π D.10π10.下列通项公式中,对应数列是递增数列的是()A B.C. D.11.在等差数列中,,,则()A. B.C. D.12.命题“,”的否定是A, B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,已知双曲线的左,右焦点分别为,,过且与圆相切的直线与双曲线的一条渐近线相交于点(点在第一象限),若,则双曲线的离心率___________.14.设椭圆的左,右焦点分别为,,过的直线l与C交于A,B两点(点A在x轴上方),且满足,则直线l的斜率为______.15.已知函数,若在上是增函数,则实数的取值范围是________16.定义在R上的函数满足,其中为自然对数的底数,,则满足的a的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等差数列的公差d不为0,满足成等比数列,数列满足.(1)求数列与通项公式:(2)若,求数列的前n项和.18.(12分)阿基米德(公元前287年---公元前212年,古希腊)不仅是著名的哲学家、物理学家,也是著名的数学家,他利用“逼近法”得到椭圆面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.在平面直角坐标系中,椭圆的面积等于,且椭圆的焦距为.(1)求椭圆的标准方程;(2)点是轴上的定点,直线与椭圆交于不同的两点,已知A关于轴的对称点为,点关于原点的对称点为,已知三点共线,试探究直线是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.19.(12分)已知抛物线,过焦点的直线l交抛物线C于M、N两点,且线段中点的纵坐标为2(1)求直线l的方程;(2)设x轴上关于y轴对称的两点P、Q,(其中P在Q的右侧),过P的任意一条直线交抛物线C于A、B两点,求证:始终被x轴平分20.(12分)已知椭圆左,右顶点分别是,,且,是椭圆上异于,的不同的两点(1)若,证明:直线必过坐标原点;(2)设点是以为直径的圆和以为直径的圆的另一个交点,记线段的中点为,若,求动点的轨迹方程21.(12分)已知向量,(1)求;(2)求;(3)若(),求的值22.(10分)已知抛物线C:上一点与焦点F的距离为(1)求和p的值;(2)直线l:与C相交于A,B两点,求直线AM,BM的斜率之积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.2、A【解析】由向量与平面法向量的关系判断直线与平面的位置关系【详解】因为,所以,所以故选:A3、D【解析】根据圆的切线性质,结合圆的标准方程、圆与圆的位置关系进行求解即可.【详解】因为、是圆的两条切线,所以,因此点、在以为直径的圆上,因为点是直线:上的动点,所以设,点,因此的中点的横坐标为:,纵坐标为:,,因此以为直径的圆的标准方程为:,而圆:,得:,即为直线的方程,由,所以直线经过定点,故选:D【点睛】关键点睛:由圆的切线性质得到点、在以为直径的圆上,运用圆与圆的位置关系进行求解是解题的关键.4、D【解析】若方程表示焦点在轴上的椭圆,则,解得,,故方程表示焦点在轴上的椭圆的概率是,故选D.5、D【解析】分析:已知逐一求解详解:已知逐一求解.故选D点睛:对于含有的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律6、D【解析】由,得在上单调递增,并且由的图象是向上凸,进而判断选项.【详解】由,得在上单调递增,因为,所以,故A不正确;对,,且,总有,可得函数的图象是向上凸,可用如图的图象来表示,由表示函数图象上各点处的切线的斜率,由函数图象可知,随着的增大,的图象越来越平缓,即切线的斜率越来越小,所以,故B不正确;,表示点与点连线的斜率,由图可知,所以D正确,C不正确.故选:D.【点睛】本题考查以数学文化为背景,导数的几何意义,根据函数的单调性比较函数值的大小,属于中档题型.7、A【解析】根据不等式性质判断即可.【详解】若“”,则成立;反之,若,当,时,不一定成立.如,但.故“”是“”的充分不必要条件.故答案为:A.【点睛】本题考查充分条件、必要调价的判断,考查不等式与不等关系,属于基础题.8、C【解析】根据题意列出不等式,利用指对数幂的互化和对数的运算公式即可解出不等式.【详解】设该驾驶员至少需经过x个小时才能驾驶汽车,则,所以,则,所以该驾驶员至少需经过约8个小时才能驾驶汽车.故选:C9、D【解析】连接交于,可得,利用线面垂直的判定定理可得:平面,于是,可得而为二面角的平面角,再求出四面体的外接球半径,进而利用球的表面积计算公式得出结论【详解】连接交于,则,易知,则平面,所以,从而为二面角的平面角,则.因为,所以,所以四面体的外接球半径故四面体BB1C1E的外接球的表面积为故选:D【点睛】本题考查了正方体的性质、线面垂直的判定与性质定理、二面角的平面角、球的表面积计算公式,考查了推理能力与计算能力,属于中档题10、C【解析】根据数列单调性的定义逐项判断即可.【详解】对于A,B选项对应数列是递减数列.对于C选项,,故数列是递增数列.对于D选项,由于.所以数列不是递增数列故选:C.11、B【解析】利用等差中项的性质可求得的值,进而可求得的值.【详解】由等差中项的性质可得,则.故选:B.12、C【解析】特称命题的否定是全称命题,并将结论加以否定,所以命题的否定为:,考点:全称命题与特称命题二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】设切点,根据,可得,在中,利用余弦定理构造齐次式,从而可得出答案.【详解】解:设切点,由,∴,∵为中点,则为中位线,∴,,中,,,,∴.故答案为:2.14、【解析】设出直线的方程并与椭圆方程联立,结合根与系数关系以及求得直线的斜率.【详解】椭圆,由于在轴上方且直线的斜率存在,所以直线的斜率不为,设直线的方程为,且,由,消去并化简得,设,,则①,②,由于,所以③,由①②③解得所以直线的方程为,斜率为.故答案为:15、【解析】根据函数在上是增函数,分段函数在整个定义域内单调,则在每个函数内单调,注意衔接点的函数值.【详解】解:因为函数在上是增函数,所以在区间上是增函数且在区间上也是增函数,对于函数在上是增函数,则;①对于函数,(1)当时,,外函数为定义域内的减函数,内函数在上是增函数,根据复合函数“同增异减”可得时函数在区间上是减函数,不符合题意,故舍去,(2)当时,外函数为定义域内的增函数,要使函数在区间上是增函数,则内函数在上也是增函数,且对数函数真数大于0,即在上也要恒成立,所以,又,所以,②又在上是增函数则在衔接点处函数值应满足:,化简得,③由①②③得,,所以实数的取值范围是.故答案为:.【点睛】方法点睛:利用单调性求参数方法如下:(1)依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;(2)需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;(3)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值16、【解析】设,求出其导数结合条件得出在上单调递减,将问题转化为求解,由的单调性可得答案.【详解】设,则由,则所以在上单调递减.又由,即,即,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据等比中项的性质及等差数列的通项公式得到方程求出公差,即可求出的通项公式,由,当时,求出,当时,两式作差,即可求出;(2)由(1)可得,利用错位相减法求和即可;【小问1详解】解:由已知,又,所以故解得(舍去)或∴∵①故当时,可知,∴,当时,可知②①②得∴又也满足,故当时,都有;【小问2详解】解:由(1)知,故③,∴④,由③④得整理得.18、(1);(2)直线恒过定点.【解析】(1)根据椭圆的焦距可求出,由椭圆的面积等于得,求出,即可求出椭圆的标准方程;(2)设直线,,进而写出为,两点坐标,将直线与椭圆的方程联立,根据韦达定理求,,由三点共线可知,将,代入并化简,得到的关系式,分析可知经过的定点坐标.【详解】(1)椭圆的面积等于,,,椭圆的焦距为,,,椭圆方程为(2)设直线,,则,,三点共线,得,直线与椭圆交于两点,,,,由,得,,,代入中,,,当,直线方程为,则重合,不符合题意;当时,直线,所以直线恒过定点.19、(1);(2)证明见解析.【解析】(1)设直线l的方程为:,联立方程,利用韦达定理可得结果;(2)设,借助韦达定理表示,即可得到结果.【详解】(1)由已知可设直线l的方程为:,联立方程组可得,设,则又因为,得,故直线l的方程为:即为;(2)由题意可设,可设过P的直线为联立方程组可得,显然设,则所以所以始终被x轴平分20、(1)证明见解析;(2).【解析】(1)设,首先证明,从而可得到,即得到;进而可得到四边形为平行四边形;再根据为的中点,即可证明直线必过坐标原点(2)设出直线的方程,与椭圆方程联立,消元,写韦达;根据条件可求出直线MN过定点,从而可得到过定点,进而可得到点在以为直径的圆上运动,从而可求出动点的轨迹方程【小问1详解】设,则,即因为,,所以因为,所以,所以.同理可证.因为,,所以四边形为平行四边形,因为为的中点,所以直线必过坐标原点【小问2详解】当直线的斜率存在时,设直线的方程为,,联立,整理得,则,,.因为,所以,因为,解得或.当时,直线的方程为过点A,不满足题意,所以舍去;所以直线的方程为,所以直线过定点.当直线的斜率不存在时,因为,所以直线的方程为,经验证,符合题意.故直线过定点.因为为的中点,为的中点,所以过定点.因为垂直平分公共弦,所以点在以为直径的圆上运动,该圆的半径,圆心坐标为,故动点的轨迹方程为21、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论