云南省陆良县2026届高二数学第一学期期末达标检测模拟试题含解析_第1页
云南省陆良县2026届高二数学第一学期期末达标检测模拟试题含解析_第2页
云南省陆良县2026届高二数学第一学期期末达标检测模拟试题含解析_第3页
云南省陆良县2026届高二数学第一学期期末达标检测模拟试题含解析_第4页
云南省陆良县2026届高二数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省陆良县2026届高二数学第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,向量,,若,则x的值为()A.-1 B.1C.-2 D.22.已知数列的前项和,且,则()A. B.C. D.3.已知A(-1,1,2),B(1,0,-1),设D在直线AB上,且,设C(λ,+λ,1+λ),若CD⊥AB,则λ的值为()A. B.-C. D.4.已知空间直角坐标系中的点,,,则点P到直线AB的距离为()A. B.C. D.5.在中,B=30°,BC=2,AB=,则边AC的长等于()A. B.1C. D.26.已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为,则m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.37.椭圆上一点到一个焦点的距离为,则到另一个焦点的距离是()A. B.C. D.8.现有甲、乙、丙、丁、戊五位同学,分别带着A、B、C、D、E五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A. B.C. D.9.已知,,且,则向量与的夹角为()A. B.C. D.10.已知抛物线y2=4x的焦点为F,定点,M为抛物线上一点,则|MA|+|MF|的最小值为()A.3 B.4C.5 D.611.已知直线过点且与直线平行,则直线方程为()A. B.C. D.12.如图为某几何体的三视图,则该几何体中最大的侧面积是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.直线l过抛物线的焦点F,与抛物线交于A,B两点,若,则直线l的斜率为______14.瑞士著名数学家欧拉在1765年证明了定理:三角形的外心、重心、垂心位于同一条直线上,这条直线被后人称为三角形的“欧拉线”.已知平面直角坐标系中各顶点的坐标分别为,,,则其“欧拉线”的方程为___________.15.抛物线()上的一点到其焦点F的距离______.16.已知双曲线的两条渐近线的夹角为,则双曲线的实轴长为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点A(,0),点C为圆B:(B为圆心)上一动点,线段AC的垂直平分线与直线BC交于点G(1)设点G的轨迹为曲线T,求曲线T的方程;(2)若过点P(m,0)()作圆O:的一条切线l交(1)中的曲线T于M、N两点,求△MNO面积的最大值18.(12分)在数列中,,且,(1)求的通项公式;(2)求的前n项和的最大值19.(12分)在平面直角坐标系中,动点到定点的距离比到轴的距离大,设动点的轨迹为曲线,分别过曲线上的两点,做曲线的两条切线,且交于点,与直线交于两点(1)求曲线的方程;(2)求面积的最小值.20.(12分)已知.(1)求在上的单调递增区间;(2)已知锐角内角,,的对边长分别是,,,若,.求面积的最大值.21.(12分)设函数.(1)讨论函数在区间上的单调性;(2)函数,若对任意的,总存在使得,求实数的取值范围.22.(10分)如图,在直角梯形中,.直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面.M为线段的中点,P为线段上的动点(1)求证:;(2)当点P满足时,求证:直线平面;(3)是否存在点P,使直线与平面所成角的正弦值为?若存在,试确定P点的位置;若不存在,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据给定条件利用空间向量垂直的坐标表示计算作答.【详解】因向量,,,则,解得,所以x的值为2.故选:D2、C【解析】由an=Sn-Sn-1,【详解】解:因为,所以,,两式相减可得,即,因为,,所以,即,时,也满足上式,所以,所以,故选:C.3、B【解析】设D(x,y,z),根据求出D(,,0),再根据CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【详解】设D(x,y,z),则=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故选:B【点睛】(1)本题主要考查向量的线性运算和空间向量垂直的坐标表示,意在考查学生对这些知识的掌握水平和分析推理能力.(2).4、D【解析】由向量在向量上的投影及勾股定理即可求.【详解】,0,,,1,,,,,,在上的投影为,则点到直线的距离为.故选:D5、B【解析】利用余弦定理即得【详解】由余弦定理,得,解得AC=1故选:B.6、A【解析】先求得样本中心,代入回归方程,即可得答案.【详解】由题意得,又样本中心在回归方程上,所以,解得.故选:A7、B【解析】利用椭圆的定义可得结果.【详解】在椭圆中,,由椭圆的定义可知,到另一个焦点的距离是.故选:B.8、D【解析】利用排列组合知识求出每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的情况个数,以及五人抽取五个礼物的总情况,两者相除即可.【详解】先从五人中抽取一人,恰好拿到自己礼物,有种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由种情况,综上:共有种情况,而五人抽五个礼物总数为种情况,故恰有一位同学拿到自己礼物的概率为.故选:D9、B【解析】先求出向量与的夹角的余弦值,即可求出与的夹角.【详解】,所以,∴,∴,∴,又∵,∴与的夹角为.故选:B.10、B【解析】作出图象,过点M作准线的垂线,垂足为H,结合图形可得当且仅当三点M,A,H共线时|MA|+|MH|最小,求解即可【详解】过点M作准线的垂线,垂足为H,由抛物线的定义可知|MF|=|MH|,则问题转化为|MA|+|MH|的最小值,结合图形可得当且仅当三点M,A,H共线时|MA|+|MH|最小,其最小值为.故选:B11、C【解析】由题意,直线的斜率为,利用点斜式即可得答案.【详解】解:因为直线与直线平行,所以直线的斜率为,又直线过点,所以直线的方程为,即,故选:C.12、B【解析】由三视图还原原几何体,确定几何体的结构,计算各面面积可得【详解】由三视图,原几何体是三棱锥,平面,,尺寸见三视图,,,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】如图,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,利用在直角三角形中,求得,从而得出直线的斜率【详解】解:如图,当在第一象限时,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,由抛物线的定义可知:设,则,,,在直角三角形中,,所以,则直线的斜率;当在第四象限时,同理可得,直线的斜率,综上可得直线l的斜率为;故答案为:14、【解析】由题意知是直角三角形,即可写出垂心、外心的坐标,进而可得“欧拉线”的方程.【详解】由题设知:是直角三角形,则垂心为直角顶点,外心为斜边的中点,∴“欧拉线”的方程为.故答案为:.15、【解析】将点坐标代入方程中可求得抛物线的方程,从而可得到焦点坐标,进而可求出【详解】解:为抛物线上一点,即有,,抛物线的方程为,焦点为,即有.故答案为:5.16、【解析】根据已知条件求得,由此求得实轴长.【详解】由于,双曲线的渐近线方程为,所以双曲线的渐近线与轴夹角小于,由得,实轴长故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解析】(1)可由题意,点G在线段AC的垂直平分线上,,可利用椭圆的定义,得到点G的轨迹为椭圆,然后利用已知的长度关系求解出椭圆方程;(2)可通过设l的方程,利用l是圆O的切线,通过点到直线的距离得到一组等量关系,然后将直线与椭圆联立方程,计算弦长,表示出△MNO面积的表达式,将上面得到的等量关系代入利用基本不等式即可求解出最值.【小问1详解】依题意有,,即G点轨迹是以A,B为焦点的椭圆,设椭圆方程为由题意可知,,则,,所以曲线T的方程为【小问2详解】设,,设直线l的方程为,因为直线l与圆相切,所以,即,联立直线l与椭圆的方程,整理得,,由韦达定理可得,,所以,又点O到直线l的距离为1,所以当且仅当,即时,取等号,所以的面积的最大值为118、(1)(2)40【解析】(1)根据递推关系,判定数列是等差数列,然后求得首项和公差,进而得到通项公式;(2)令,求得,进而根据数列的前项和的意义求得当或5时,有最大值,进而求得和的最大值.【小问1详解】解:∵数列满足,∴,∴是等差数列,设的公差为d,则,即,解得,∴,∴【小问2详解】令,得,解得,所以当或5时,有最大值,且最大值为19、(1)(2)【解析】(1)由题意可得化简可得答案;(2)求出、方程并得到、点坐标,再联立,方程求出交点和、点到的距离,可得,设,与抛物线方程联立利用韦达定理得到,设,记,利用导数可得答案..【小问1详解】由题意可知:,即:化简得:;【小问2详解】由题意可知:,,,过点的切线斜率为,方程为:①,令,,则,同理:方程为:②,,联立①②得:,的交点,,点到的距离,所以③,设:,则,整理得,所以,由韦达定理得:,,代入③式得:,设,记,则,令得(舍负),时,单调递减:时,单调递增,所以,当且仅当时的最小值为.20、(1);(2).【解析】(1)首先根据三角函数恒等变换得到,再求其单调增区间即可.(2)根据得到,根据余弦定理和基本不等式得到,结合三角形面积公式计算即可.【小问1详解】由题意.由,得,令,得,所以在上的单调递增区间是【小问2详解】因为,所以,得,又C是锐角,所以,由余弦定理:,得,所以,且当时等号成立所以,故面积最大值为21、(1)答案见解析;(2).【解析】(1)求导,根据导函数的正负性分类讨论进行求解即可;(2)根据存在性和任意性的定义,结合导数的性质、(1)的结论、构造函数法分类讨论进行求解即可.【小问1详解】,,①当时,恒成立,在上单调递增.②当时,恒成立,在上单调递减,③当吋,,在单调递减,单调递增.综上所述,当吋,在上单调递增;当时,在上单调递减,当时,在单调递减,单调递增.【小问2详解】由题意可知:在单调递减,单调递增由(1)可知:①当时,在单调递增,则恒成立②当时,在单调递减,则应(舍)③当时,,则应有令,则,且在单调递增,单调递减,又恒成立,则无解综上,.【点睛】关键点睛:运用构造函数法,结合存在性、任意性的定义进行求解是解题的关键.22、(1)见解析(2)见解析(3)存在点P,【解析】(1)建立空间坐标系求两直线的方向向量,根据数量积为0可证的结论;(2)求得直线的方向向量和面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论