版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州市震泽中学2026届高二数学第一学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线的倾斜角为()A B.C. D.2.已知直线和互相垂直,则实数的值为()A. B.C.或 D.3.若,,则下列各式中正确的是()A. B.C. D.4.直线经过两个定点,,则直线倾斜角大小是()A. B.C. D.5.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个 B.2个C.3个 D.4个6.在数列中抽取部分项(按原来的顺序)构成一个新数列,记为,再在数列插入适当的项,使它们一起能构成一个首项为1,公比为3的等比数列.若,则数列中第项前(不含)插入的项的和最小为()A.30 B.91C.273 D.8207.公元前6世纪,古希腊的毕达哥拉斯学派研究发现了黄金分割,简称黄金数.离心率等于黄金数的倒数的双曲线称为黄金双曲线.若双曲线是黄金双曲线,则()A. B.C. D.8.设、分别是椭圆()的左、右焦点,过的直线l与椭圆E相交于A、B两点,且,则的长为()A. B.1C. D.9.在空间四边形OABC中,,,,点M在线段OA上,且,N为BC中点,则等于()A. B.C. D.10.若函数有零点,则实数的取值范围是()A. B.C. D.11.如图,用4种不同的颜色对A,B,C,D四个区域涂色,要求相邻的两个区域不能用同一种颜色,则不同的涂色方法有()A.24种 B.48种C.72种 D.96种12.已知定义在上的函数的导函数为,且恒有,则下列不等式一定成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点是椭圆上任意一点,则点到直线距离的最小值为______14.如图①,用一个平面去截圆锥,得到的截口曲线是椭圆.许多人从纯几何的角度出发对这个问题进行过研究,其中比利时数学家(1794-1847)的方法非常巧妙,极具创造性.在圆锥内放两个大小不同的球,使得它们分别与圆锥的侧面,截面相切,两个球分别与截面相切于,在截口曲线上任取一点,过作圆锥的母线,分别与两个球相切于,由球和圆的几何性质,可以知道,,于是.由的产生方法可知,它们之间的距离是定值,由椭圆定义可知,截口曲线是以为焦点的椭圆.如图②,一个半径为2的球放在桌面上,桌面上方有一个点光源,则球在桌面上的投影是椭圆.已知是椭圆的长轴,垂直于桌面且与球相切,,则椭圆的离心率为___________.15.已知双曲线,的左、右焦点分别为、,且的焦点到渐近线的距离为1,直线与交于,两点,为弦的中点,若为坐标原点)的斜率为,,则下列结论正确的是____________①;②的离心率为;③若,则的面积为2;④若的面积为,则为钝角三角形16.函数,则函数在处切线的斜率为_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,双曲线的左、右两个焦点为、,动点P满足(1)求动点P的轨迹E的方程;(2)设过且不垂直于坐标轴的动直线l交轨迹E于A、B两点,问:线段上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?若存在,请给出证明:若不存在,请说明理由18.(12分)已知函数.(1)若与在处有相同的切线,求实数的取值;(2)若时,方程在上有两个不同的根,求实数的取值范围.19.(12分)已知数列的前项和为,且(1)求数列的通项公式;(2)若,求数列的前项和.20.(12分)如图,AC是圆O的直径,B是圆O上异于A,C的一点,平面ABC,点E在棱PB上,且,,.(1)求证:;(2)当三棱锥的体积最大时,求二面角的余弦值.21.(12分)已知在数列中,,且.(1)求,,并证明数列是等比数列;(2)求的通项公式及前n项和.22.(10分)已知函数(1)当时,求的单调性;(2)若存在两个极值点,试证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设直线倾斜角为,则,再结合直线的斜率与倾斜角的关系求解即可.【详解】设直线的倾斜角为,则,∵,所以.故选:C2、B【解析】由两直线垂直可得出关于实数的等式,求解即可.【详解】由已知可得,解得.故选:B.3、D【解析】根据题意,结合,,利用不等式的性质可判断,从而判断,再利用不等式性质得出正确答案.【详解】,,,又,,两边同乘以负数,可知故选:D4、A【解析】由两点坐标求出斜率,再得倾斜角【详解】由已知直线的斜率为,所以倾斜角为故选:A5、D【解析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以,的面积为,因此本命题正确,故选:D【点睛】关键点睛:利用方程特征进行求解判断是解题的关键.6、C【解析】先根据等比数列的通项公式得到,列出数列的前6项,将其中是数列的项的所有数去掉即可求解.【详解】因为是以1为首项、3为公比的等比数列,所以,则由,得,即数列中前6项分别为:1、3、9、27、81、243,其中1、9、81是数列的项,3、27、243不是数列的项,且,所以数列中第7项前(不含)插入的项的和最小为.故选:C.7、A【解析】根据黄金双曲线的定义直接列方程求解【详解】双曲线中的,所以离心率,因为双曲线是黄金双曲线,所以,两边平方得,解得或(舍去),故选:A8、C【解析】由椭圆的定义得:,,结合条件可得,即可得答案.【详解】由椭圆的定义得:,,又,,所以,由椭圆知,所以.故选:C9、B【解析】由题意结合图形,直接利用,求出,然后即可解答.【详解】解:因为空间四边形OABC如图,,,,点M在线段OA上,且,N为BC的中点,所以.所以.故选:B.10、A【解析】设,则函数有零点转化为函数的图象与直线有交点,利用导数判断函数的单调性,即可求出【详解】设,定义域为,则,易知为单调递增函数,且所以当时,,递减;当时,,递增,所以所以,即故选:A【点睛】本题主要考查根据函数有零点求参数的取值范围,意在考查学生的转化能力,属于基础题11、B【解析】按涂色顺序进行分四步,根据分步乘法计数原理可得解.【详解】按涂色顺序进行分四步:涂A部分时,有4种涂法;涂B部分时,有3种涂法;涂C部分时,有2种涂法;涂D部分时,有2种涂法.由分步乘法计数原理,得不同的涂色方法共有种.故选:B.12、D【解析】构造函数,用导数判断函数单调性,即可求解.【详解】根据题意,令,其中,则,∵,∴,∴在上为单调递减函数,∴,即,,则错误;,即,则错误;,即,则错误;,即,则正确;故选:.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求椭圆上平行于的直线方程,利用平行线的距离公式求椭圆上点到直线的最小值.【详解】设与椭圆相切,且平行于的直线为,联立椭圆整理可得:,则,∴,又两平行线的距离,∴到直线距离的最小值为.故答案为:.14、##0.5【解析】利用球与圆锥相切,得出截面,在平面图形中求解,以及圆锥曲线的来源来理解切点为椭圆的一个焦点,求出,得出离心率.【详解】设球切于,切于E,,球半径为2,所以,,∴,又中,,,故椭圆长轴长为,,根据椭圆在圆锥中截面与二球相切的切点为椭圆的焦点知:球O与相切的切点为椭圆的一个焦点,且,,椭圆的离心率为.故答案:.15、②④【解析】由已知可得,可求,,从而判断①②,求出△的面积可判断③,设,,利用面积求出点的坐标,再求边长,求出可判断④【详解】解:设,,,,可得,,两式相减可得,由题意可得,且,,,,,,故②正确;的焦点到渐近线的距离为1,设到渐近线的距离为,则,即,,故①错误,,若,不妨设在右支上,,又,,则的面积为,故③不正确;设,,,,将代入双曲线,得,,根据双曲线的对称性,不妨取点的坐标为,,,,,为钝角,为钝角三角形.故④正确故答案为:②④16、【解析】根据导数的几何意义求解即可.【详解】解:因为,所以,所以,所以函数在处切线的斜率为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,理由见解析.【解析】(1)根据题意用定义法求解轨迹方程;(2)在第一问的基础上,设出直线l的方程,联立椭圆方程,用韦达定理表达出两根之和,两根之积,求出直线l的垂直平分线,从而得到D点坐标,证明出结论.【小问1详解】由题意得:,所以,,而,故动点P的轨迹E的方程为以点、为焦点的椭圆方程,由得:,,所以动点P的轨迹E的方程为;【小问2详解】存,理由如下:显然,直线l的斜率存在,设为,联立椭圆方程得:,设,,则,,要想以DA、DB为邻边的平行四边形为菱形,则点D为AB垂直平分线上一点,其中,,则,故AB的中点坐标为,则AB的垂直平分线为:,令得:,且无论为何值,,点D在线段上,满足题意.18、(1)(2)【解析】(1)根据导数的几何意义求得函数在处的切线方程,再由有相同的切线这一条件即可求解;(2)先分离,再研究函数的单调性,最后运用数形结合的思想求解即可.【小问1详解】设公切线与的图像切于点,f'(x)=1+lnx⇒f由题意得:;【小问2详解】当时,,①,①式可化为为,令令,,在上单调递增,在上单调递减.,当时,由题意知:19、(1)(2)【解析】(1)根据,再结合等比数列的定义,即可求出结果;(2)由(1)可知,再利用错位相减法,即可求出结果.【小问1详解】解:因为,当时,,解得当时,,所以,即.所以数列是首项为2,公比为2的等比数列.故.【小问2详解】解:由(1)知,则,所以①②,①-②得.所以数列的前项和20、(1)证明见解析(2)【解析】(1)由圆的性质可得,再由线面垂直的性质可得,从而由线面垂直的判定定理可得平面PAB,所以得,再结合已知条件可得平面PBC,由线面垂直的性质可得结论;(2)由已知条件结合基本不等式可得当三棱锥的体积最大时,是等腰直角三角形,,从而以OB,OC所在直线分别为x轴,y轴,以过点O且垂直于圆O平面的直线为z轴建立如图所示的空间直角坐标系,利用空间向量求解.【小问1详解】证明:因为AC是圆O的直径,点B是圆O上不与A,C重合的一个动点,所以.因为平面ABC,平面ABC,所以.因为,且AB,平面PAB,所以平面PAB.因为平面PAB,所以.因为,,且BC,平面PBC,所以平面PBC.因为平面PBC,所以.【小问2详解】解:因为,,所以,所以三棱锥的体积,(当且仅当“”时等号成立).所以当三棱锥的体积最大时,是等腰直角三角形,.所以以OB,OC所在直线分别为x轴,y轴,以过点O且垂直于圆O平面的直线为z轴建立如图所示的空间直角坐标系,则,,,.因为∽,所以,因为,,所以,所以,.设向量为平面的一个法向量,则即令得,.向量为平面ABC的一个法向量,.因为二面角是锐角,所以二面角的余弦值为.21、(1),,证明见解析(2),【解析】(1)根据递推关系求出,,对递推公式变形,即可得证;(2)结合(1)求得通项公式,分组求和.【小问1详解】因为,且所以,,∵,∴,∵,∴,且,∴数列是等比数列.【小问2详解】由(1)可知是以为首项,以3为公比的等比数列,即,即;.22、(1)答案见解析(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年怀化市教育局直属学校公开招聘教育部直属师范大学公费师范毕业生备考题库及答案详解参考
- 改造翻修合同范本
- 挂具买卖合同范本
- 国际旅游合同范本
- 商场物流合同范本
- 垃圾清理合同范本
- 培训卤肉合同范本
- 墓地授权合同范本
- 墙面画画合同范本
- 拟录取人员协议书
- 2025年云南省人民检察院聘用制书记员招聘(22人)备考笔试题库及答案解析
- 2026届四川凉山州高三高考一模数学试卷试题(含答案详解)
- 银行党支部书记2025年抓基层党建工作述职报告
- 肿瘤标志物的分类
- 2025山西忻州市原平市招聘社区专职工作人员50人考试历年真题汇编附答案解析
- 中药煎煮知识与服用方法
- 2026东莞银行秋季校园招聘备考题库及答案详解(基础+提升)
- 消防水泵房管理制度及操作规程
- 野战军生存课件
- 《民航概论》期末考试复习题库(附答案)
- 2025年学校工会工作总结范文(5篇)
评论
0/150
提交评论