版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省七校联合体2026届高二数学第一学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“,”否定是()A., B.,C., D.,2.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.某摊主2020年4月初向银行借了免息贷款8000元,用于进货,因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费800元,余款作为资金全部用于下月再进货,如此继续,预计到2021年3月底该摊主的年所得收入为()(取,)A.24000元 B.26000元C.30000元 D.32000元3.如图,在平行六面体(底面为平行四边形的四棱柱)中,E为延长线上一点,,则=()A. B.C. D.4.已知双曲线:的左、右焦点分别为,,且,点是的右支上一点,且,,则双曲线的方程为()A. B.C. D.5.过点的直线与圆相切,则直线的方程为()A.或 B.或C.或 D.或6.某种产品的广告费支出与销售额(单位:万元)之间的关系如下表:245683040605070若已知与的线性回归方程为,那么当广告费支出为5万元时,随机误差的效应(残差)为万元(残差=真实值-预测值)A.40 B.30C.20 D.107.已知直线是圆的对称轴,过点A作圆C的一条切线,切点为B,则|AB|=()A.1 B.2C.4 D.88.从编号为1~120的商品中利用系统抽样的方法抽8件进行质检,若所抽样本中含有编号66的商品,则下列编号一定被抽到的是()A.111 B.52C.37 D.89.已知数列{}满足,则()A. B.C. D.10.在等比数列中,,,则等于()A.90 B.30C.70 D.4011.若函数在上为单调减函数,则的取值范围()A. B.C. D.12.在中,角A,B,C所对的边分别为a,b,c,,,则()A. B.1C.2 D.4二、填空题:本题共4小题,每小题5分,共20分。13.小明同学发现家中墙壁上灯光边界类似双曲线的一支.如图,P为双曲线的顶点,经过测量发现,该双曲线的渐近线相互垂直,AB⊥PC,AB=60cm,PC=20cm,双曲线的焦点位于直线PC上,则该双曲线的焦距为____cm.14.从编号为01,02,…,60的60个产品中用系统抽样的方法抽取一个样本,已知样本中的前两个编号分别为02,08(编号按从小到大的顺序排列),则样本中最大的编号是_________15.已知为平面的一个法向量,为直线的方向向量.若,则__________.16.过双曲线的右焦点作一条与其渐近线平行的直线,交于点.若点的横坐标为,则的离心率为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列前3项和为(1)求的通项公式;(2)若对任意恒成立,求m的取值范围18.(12分)已知数列满足(1)证明:数列为等差数列,并求数列的通项公式;(2)设,求数列的前n项和19.(12分)已知函数,.(1)若,求曲线在点处的切线方程;(2)若函数在上是减函数,求实数的取值范围.20.(12分)已知点关于直线的对称点为Q,以Q为圆心的圆与直线相交于A,B两点,且(1)求圆Q的方程;(2)过坐标原点O任作一直线交圆Q于C,D两点,求证:为定值21.(12分)在中,,,的对边分别是,,,已知.(1)求;(2)若,且的面积为4,求的周长22.(10分)已知函数(1)当时,求的单调递减区间;(2)若关于的方程恰有两个不等实根,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.2、D【解析】设,从4月份起每月底用于下月进借货的资金依次记为,由题意得出的递推关系,变形构造出等比数列,由得其通项公式后可得结论【详解】设,从4月份起每月底用于下月进借货的资金依次记为,,、同理可得,所以,而,所以数列是等比数列,公比为,所以,,总利润为故选:D【点睛】思路点睛:本题考查数列的实际应用.解题方法是用数列表示月初进货款,得出递推关系,然后构造等比数列求解3、A【解析】根据空间向量的加减法运算法则,直接写出向量的表达式,即可得答案.【详解】=,故选:A.4、B【解析】画出图形,利用已知条件转化求解,关系,利用,解得,即可得到双曲线的方程【详解】由题意双曲线的图形如图,连接与轴交于点,设,,因为,所以,因为,所以,则,因为点是的右支上一点,所以,所以,则,因为,所以,,由勾股定理可得:,即,解得,则,所以双曲线的方程为:故选:B5、D【解析】根据斜率存在和不存在分类讨论,斜率存在时设直线方程,由圆心到直线距离等于半径求解【详解】圆心为,半径为2,斜率不存在时,直线满足题意,斜率存在时,设直线方程为,即,由,得,直线方程为,即故选:D6、D【解析】分析:把所给的广告费支出5万元时,代入线性回归方程,做出相应的销售额,这是一个预测值,再求出与真实值之间有一个误差即得.详解:与的线性回归方程为,当时,50,当广告费支出5万元时,由表格得:,故随机误差的效应(残差)为万元.故选D.点睛:本题考查回归分析的初步应用,考查求线性回归方程,考查预测y的值,是一个综合题7、C【解析】首先将圆心坐标代入直线方程求出参数a,求得点A的坐标,由切线与圆的位置关系构造直角三角形从而求得.【详解】圆即,圆心为,半径为r=3,由题意可知过圆的圆心,则,解得,点A坐标为,,切点为B则,故选:C【点睛】本题考查直线与圆的位置关系,属于基础题.8、A【解析】先求出等距抽样的组距,从而得到被抽到的是,从而求出答案.【详解】120件商品中抽8件,故,因为含有编号66的商品被抽到,故其他能被抽到的是,当时,,其他三个选项均不合要求,故选:A9、B【解析】先将通项公式化简然后用裂项相消法求解即可.【详解】因为,.故选:B10、D【解析】根据等比数列的通项公式即可求出答案.【详解】设该等比数列的公比为q,则,则.故选:D11、A【解析】分析可知对任意的恒成立,利用参变量分离法结合二次函数的基本性质可求得实数的取值范围.【详解】因为,则,由题意可知,对任意的恒成立,则,当时,在上单调递减,在上单调递减,所以,,故.故选:A.12、C【解析】直接运用正弦定理可得,解得详解】由正弦定理,得,所以故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立直角坐标系,利用代入法、双曲线的对称性进行求解即可.【详解】建立如图所示的直角坐标系,设双曲线的标准方程为:,因为该双曲线的渐近线相互垂直,所以,即,因为AB=60cm,PC=20cm,所以点的坐标为:,代入,得:,因此有,所以该双曲线的焦距为,故答案为:14、56【解析】根据系统抽样的定义得到编号之间的关系,即可得到结论.【详解】由已知样本中的前两个编号分别为02,08,则样本数据间距为,则样本容量为,则对应的号码数,则当时,x取得最大值为56故答案为:5615、##【解析】根据线面平行列方程,化简求得的值.【详解】由于,所以.故答案为:16、【解析】双曲线的右焦点为.不妨设所作直线与双曲线的渐近线平行,其方程为,代入求得点的横坐标为,由,得,解之得,(舍去,因为离心率),故双曲线的离心率为.考点:1.双曲线的几何性质;2.直线方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由等比数列的基本量,列式,即可求得首项和公比,再求通项公式;(2)由题意转化为求数列的前项和的最大值,即可求参数的取值范围.【小问1详解】设等比数列的公比为,则,①,即,得,即,代入①得,解得:,所以;【小问2详解】由(1)可知,数列是首项为2,公比为的等比数列,,若对任意恒成立,即,数列,,单调递增,的最大值无限趋近于4,所以18、(1)证明见解析,;(2).【解析】(1)由得是公差为2的等差数列,再由可得答案.(2),分为奇数、偶数,分组求和即可求解.【小问1详解】由,得,故是公差为2的等差数列,故,由,故,于是.【小问2详解】依题意,,当为偶数时,故,当为奇数时,,综上,.19、(1).(2).【解析】分析:(1)由和可由点斜式得切线方程;(2)由函数在上是减函数,可得在上恒成立,,由二次函数的性质可得解.详解:(1)当时,所以,所以曲线在点处的切线方程为.(2)因为函数在上是减函数,所以在上恒成立.做法一:令,有,得故.实数的取值范围为做法二:即在上恒成立,则在上恒成立,令,显然在上单调递减,则,得实数的取值范围为点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).20、(1)(2)证明见解析【解析】(1)先求出点坐标,然后根据圆心到直线的距离公式及的值求出半径即可求得圆的方程.(2)设出直线方程,联立圆和直线方程利用韦达定理来求解.【小问1详解】解:点关于直线的对称点Q为由Q到直线的距离,所以所以圆的方程为【小问2详解】当直线CD斜率不存在时,,所以.当直线CD斜率存在时,设为k,则直线为,记,联立,得所以,综上,为定值521、(1)(2)【解析】(1)根据正弦定理及题中条件,可得,化简整理,即可求解(2)由的面积为4,结合(1)中结论,可得,结合余弦定理,可得,从而可求的周长【详解】解:(1)由及正弦定理得,,又,∴,∴,∴.(2)∵的面积为,∴.由余弦定理得,∴.故的周长为.【点睛】本题考查正弦定理应用,余弦定理解三角形,三角形面积公式,考查计算化简的能力,属基础题22、(1);(2)【解析】(1)求出导数,令,得出变化情况表,即可得出单调区间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 真心话一百道题目及答案
- 多元共治理论视域下我国城市社区生活垃圾分类治理路径研究-基于江苏省H市的调查
- 复合材料固化工艺优化-第1篇
- 2025年海南省公需课学习-生态环境公益诉讼制度研究406
- 2025年质量月质量知识竞赛试题集及答案(共50题)
- 2025年营养健康顾问知识竞赛题库及答案(共100题)
- 期末培优验收卷(试卷)2025-2026学年六年级语文上册(统编版)
- 南昌初三考试真题及答案
- 酒店住宿安全试题及答案
- 农村建房承建合同范本
- 颈椎病的手术治疗方法
- 野性的呼唤读书分享
- 极简化改造实施规范
- 科研方法论智慧树知到期末考试答案章节答案2024年南开大学
- DBJ51-T 139-2020 四川省玻璃幕墙工程技术标准
- 一带一路教学课件教学讲义
- 工厂虫害控制分析总结报告
- 回顾性中医医术实践资料(医案)表
- 延期交房起诉状
- 广东省消防安全重点单位消防档案
- 高考日语形式名词わけ、べき、はず辨析课件
评论
0/150
提交评论