2026届吉林省通化市“BEST合作体”高二数学第一学期期末质量检测模拟试题含解析_第1页
2026届吉林省通化市“BEST合作体”高二数学第一学期期末质量检测模拟试题含解析_第2页
2026届吉林省通化市“BEST合作体”高二数学第一学期期末质量检测模拟试题含解析_第3页
2026届吉林省通化市“BEST合作体”高二数学第一学期期末质量检测模拟试题含解析_第4页
2026届吉林省通化市“BEST合作体”高二数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届吉林省通化市“BEST合作体”高二数学第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图为学生做手工时画的椭圆(其中网格是由边长为1的正方形组成),它们的离心率分别为,则()A. B.C. D.2.已知是两个数1,9的等比中项,则圆锥曲线的离心率为()A.或 B.或C. D.3.中国历法推测遵循以测为辅,以算为主的原则.例如《周髀算经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其它节气的晷影长则是按照等差数列的规律计算得出的.二十四节气中,从冬至到夏至的十三个节气依次为:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种、夏至.已知《周髀算经》中记录某年的冬至的晷影长为13尺,夏至的晷影长是1.48尺,按照上述规律,那么《周髀算经》中所记录的立夏的晷影长应为()A.尺 B.尺C.尺 D.尺4.若,则()A.0 B.1C. D.25.已知直线与直线垂直,则()A. B.C. D.6.下列命题正确的是()A经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面7.某学校要从5名男教师和3名女教师中随机选出3人去支教,则抽取的3人中,女教师最多为1人的选法种数为()A.10 B.30C.40 D.468.已知,,,则点C到直线AB的距离为()A.3 B.C. D.9.在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹记为C,则曲线C的离心率为()A. B.C. D.10.在等差数列中,,表示数列的前项和,则()A.43 B.44C.45 D.4611.命题;命题.则A.“或”为假 B.“且”为真C.真假 D.假真12.抛物线的焦点到双曲线的渐近线的距离是()A. B.C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线两焦点之间的距离为4,则双曲线的渐近线方程是___________.14.数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图),给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围成的“心形”区域的面积小于3;其中,所有正确结论的序号是________15.中国古代《易经》一书中记载,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位古人在从右到左依次排列的红绳子上打结,满三进一,用来记录每年进的钱数.由图可得,这位古人一年的收入的钱数为___________.16.已知斜率为的直线与椭圆相交于不同的两点A,B,M为y轴上一点且满足|MA|=|MB|,则点M的纵坐标的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某城镇为推进生态城镇建设,对城镇的生态环境、市容市貌等方面进行了全面治理,为了解城镇居民对治理情况的评价和建议,现随机抽取了200名居民进行问卷并评分(满分100分),将评分结果制成如下频率分布直方图,已知图中a,b,c成等比数列,且公比为2(1)求图中a,b,c的值,并估计评分的均值(各段分数用该段中点值作代表);(2)根据统计数据,在评分为“50~60”和“80~90”的居民中用分层抽样的方法抽取了6个居民.若从这6个居民中随机选择2个参加座谈,求所抽取的2个居民中至少有1个评分在“80~90”的概率18.(12分)如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.19.(12分)已知数列满足,.(1)求证:数列是等比数列;(2)求数列的通项公式及前项的和.20.(12分)某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每种单价(元)试销l天,得到如表单价(元)与销量(册)数据:单价(元)1819202122销量(册)6156504845(l)根据表中数据,请建立关于的回归直线方程:(2)预计今后的销售中,销量(册)与单价(元)服从(l)中的回归方程,已知每册书的成本是12元,书店为了获得最大利润,该册书的单价应定为多少元?附:,,,.21.(12分)已知,p:,q:(1)若p是q的充分不必要条件,求实数m的取值范围;(2)若,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围22.(10分)国家助学贷款由国家指定的商业银行面向在校全日制高等学校经济困难学生发放.用于帮助他们支付在校期间的学习和日常生活费.从年秋季学期起,全日制普通本专科学生每人每年申请贷款额度由不超过元提高至不超过元,助学贷款偿还本金的宽限期从年延长到年.假如学生甲在本科期间共申请到元的助学贷款,并承诺在毕业后年内还清,已知该学生毕业后立即参加工作,第一年的月工资为元,第个月开始,每个月工资比前一个月增加直到元,此后工资不再浮动.(1)学生甲参加工作后第几个月的月工资达到元;(2)如果学生甲从参加工作后的第一个月开始,每个月除了偿还应有的利息外,助学贷款的本金按如下规则偿还:前个月每个月偿还本金元,第个月开始到第个月每个月偿还的本金比前一个月多元,第个月偿还剩余的本金.则他第个月的工资是否足够偿还剩余的本金.(参考数据:;;)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据图知分别得到椭圆、、的半长轴和半短轴,再由求解比较即可.【详解】由图知椭圆的半长轴和半短轴分别为:,椭圆的半长轴和半短轴分别为:,椭圆的半长轴和半短轴分别为:,所以,,,所以,故选:D2、A【解析】根据题意可知,当时,根据椭圆离心率公式,即可求出结果;当时,根据双曲线离心率公式,即可求出结果.【详解】因为是两个数1,9的等比中项,所以,所以,当时,圆锥曲线,其离心率为;当时,圆锥曲线,其离心率为;综上,圆锥曲线的离心率为或.故选:A.3、B【解析】根据等差数列定义求得公差,再求解立夏的晷影长在数列中所对应的项即可【详解】设从冬至到夏至的十三个节气依次为等差数列的前13项,则所以公差为,则立夏的晷影长应为(尺)故选:B4、D【解析】由复数的乘方运算求,再求模即可.【详解】由题设,,故2.故选:D5、C【解析】根据两直线垂直可直接构造方程求得结果.【详解】由两直线垂直得:,解得:.故选:C.6、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D7、C【解析】可分为女教师0人,男教师3人和女教师1人,男教师2人两种情况,用组合数表示计算即得解【详解】女教师最多为1人即女教师为0人或者1人若女教师为0人,则男教师有3人,有种选择;若女教师为1人,则男教师2人,有种选择;故女教师最多为1人的选法种数为种故选:C8、D【解析】应用空间向量的坐标运算求在上投影长及的模长,再应用勾股定理求点C到直线AB的距离.【详解】因为,,所以设点C到直线AB的距离为d,则故选:D9、B【解析】设,,则由题意可得,代入圆方程中化简可得曲线C的方程,从而可求出离心率【详解】设,,则,得,所以,因为点在圆上,所以,即,所以点的轨迹方程为,所以,则所以离心率为,故选:B10、C【解析】根据等差数列的性质,求得,结合等差数列的求和公式,即可求解.【详解】由等差数列中,满足,根据等差数列的性质,可得,所以,则.故选:C.11、D【解析】命题:可能为0,不为0,假命题,命题:,为真命题,所以“或”为真命题,“且”为假命题.选D.12、B【解析】先确定抛物线的焦点坐标,和双曲线的渐近线方程,再由点到直线的距离公式即可求出结果.【详解】因为抛物线的焦点坐标为,双曲线的渐近线方程为,由点到直线的距离公式可得.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】根据条件求出c,进而根据求出a,最后写出渐近线方程.【详解】因为双曲线两焦点之间的距离为4,所以,解得,所以,,双曲线的渐近线方程是.故答案为:.14、①②【解析】先根据图像的对称性找出整点,再判断是否还有其他的整点在曲线上;找出曲线上离原点距离最大的点的区域,再由基本不等式得到最大值不超过;在心形区域内找到一个内接多边形,该多边形的面积等于3,从而判断出“心形”区域的面积大于3.【详解】①:由于曲线,当时,;当时,;当时,;由于图形的对称性可知,没有其他的整点在曲线上,故曲线恰好经过6个整点:,,,,,,所以①正确;②:由图知,到原点距离的最大值是在时,由基本不等式,当时,,所以即,所以②正确;③:由①知长方形CDFE的面积为2,三角形BCE的面积为1,所以曲线C所围成的“心形”区域的面积大于3,故③错误;故答案为:①②.【点睛】找准图形的关键信息,比如对称性,整点,内接多边形是解决本题的关键.15、25【解析】将原问题转化为三进制计算,即可求解【详解】解:由题意可得,从左到右的数字依次为221,即古人一年的收入的钱数为故答案为:16、【解析】设直线的方程为,由消去并化简得,设,,,解得..由于,所以是垂直平分线与轴的交点,垂直平分线方程为,令得,由于,所以.也即的纵坐标的取值范围是.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,,均值为65.6(2)【解析】(1)根据a,b,c成等比数列且公比为2,得到a,b,c的关系,利用频率之和为1,求出a,b,c,估计评分的均值;(2)利用列举法得到基本事件,求出相应的概率.【小问1详解】由题意得,,,有,所以,即,解得,于是,评分在40~50,50~60,60~70,70~80,80~90,90~100的概率分别为0.15,0.20,0.30,0.20,0.10,0.05,则均分估计值为【小问2详解】评分在“50~60”和“80~90”分别有40人和20人则所抽取的6个居民中,评分在“80~90”一组有2人,记为A1,A2,评分在“50~60”一组4人,记为B1,B2,B3,B4从这6人中选取2人的所有基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),共15个其中至少有1个评分在“80~90”的基本事件有9个则所求的概率,即抽取的2个居民中至少有1个评分在“80~90”的概率为18、(Ⅰ)见解析;(Ⅱ).【解析】本题考查线面平行、线线平行、向量法等基础知识,考查空间想象能力、分析问题的能力、计算能力.第一问,利用线面平行的定理,先证明线线平行,再证明线面平行;第二问,可以先找到线面角,再在三角形中解出正弦值,还可以用向量法建立直角坐标系解出正弦值.试题解析:(Ⅰ)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.从而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知PA⊥平面ABCD,从而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以APH是PA与平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.从而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A为原点,以,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)设平面PCE的法向量为n=(x,y,z),由得设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,则sinα==.所以直线PA与平面PCE所成角的正弦值为.考点:线线平行、线面平行、向量法.19、(1)证明见解析;(2),.【解析】(1)证明出,即可证得结论成立;(2)由(1)的结论并确定数列的首项和公比,可求得数列的通项公式,再利用分组求和法可求得.【小问1详解】证明:因为数列满足,,则,且,则,,,以此类推可知,对任意的,,所以,,故数列为等比数列.【小问2详解】解:由(1)可知,数列是首项为,公比为的等比数列,则,所以,,因此,.20、(1)(2)当单价应定为22.5元时,可获得最大利润【解析】(l)先计算的平均值,再代入公式计算得到(2)计算利润为:计算最大值.【详解】解:(1),,,所以对的回归直线方程为:(2)设获得的利润为,,因为二次函数的开口向下,所以当时,取最大值,所以当单价应定为22.5元时,可获得最大利润【点睛】本题考查了回归方程,函数的最值,意在考查学生的计算能力.21、(1)(2)或【解析】(1)根据命题对应的集合是命题对应的集合的真子集列式解得结果即可得解;(2)“p或q”为真命题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论