版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
·第x=4,y=5.所以他们取出的两张卡片上的数字分别是4、5,第一次他们拼成的两位数为45,第二次他们拼成的两位数是54.17.解:由题意得:中,,(米).答:他们测得湘江宽度为953米18.分析:(1)根据图表给出的数据可直接得出本次调查的样本容量;(2)把调查中每分钟跳绳次数达到110次以上(含110次)的人数加起来即可;(3)根据图表给出的数据可直接补全直方图;(4)根据题意画出树状图,得出抽中一男一女的情况,再根据概率公式,即可得出答案.解:(1)本次调查的样本容量是:8+23+16+2+1=50;故答案为:50;(2)本次调查中每分钟跳绳次数达到110次以上(含110次)的共有的共有人数是:16+2+1=19(人);故答案为:19;(3)根据图表所给出的数据补图如下:(4)根据题意画树状图如下:共有6种情况,恰好抽中一男一女的有4种情况,则恰好抽中一男一女的概率是=.19.分析:(1)把A的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把A.B的坐标代入一次函数的解析式得出方程组,求出方程组的解即可得出一次函数的解析式;(2)求出直线与y轴的交点坐标,关键三角形的面积公式求出△ACD和△BCD的面积,即可得出答案.解:(1)把A(﹣4,2),B(2,﹣4)分别代入y=kx+b和中,,2=,解得:k=﹣1,b=﹣2,m=﹣8,即反比例函数的表达式为,一次函数的表达式为y=﹣x﹣2;(2)设一次函数y=﹣x﹣2的图象与y轴的交点为D,则D(0,﹣2),∵S△ABC=12,∴,∴CD=4,∴n=4.20.分析:(1)设⊙O切AB于点P,连接OP,由切线的性质可知∠OPB=90°.先由菱形的性质求得∠OBP的度数,然后依据含30°直角三角形的性质证明即可;(2)设GH交BD于点N,连接AC,交BD于点Q.先依据特殊锐角三角函数值求得BD的长,设⊙O的半径为r,则OB=2r,MB=3r.当点E在AB上时.在Rt△BEM中,依据特殊锐角三角函数值可得到EM的长(用含r的式子表示),由图形的对称性可得到EF、ND、BM的长(用含r的式子表示,从而得到MN=18﹣6r,接下来依据矩形的面积列方程求解即可;当点E在AD边上时.BM=3r,则MD=18﹣3r,最后由MB=3r=12列方程求解即可;(3)先根据题意画出符合题意的图形,①如图4所示,点E在AD上时,可求得DM=r,BM=3r,然后依据BM+MD=18,列方程求解即可;②如图5所示;依据图形的对称性可知得到OB=BD;③如图6所示,可证明D与O重合,从而可求得OB的长;④如图7所示:先求得DM=r,OMB=3r,由BM﹣DM=DB列方程求解即可.解:(1)如图1所示:设⊙O切AB于点P,连接OP,则∠OPB=90°.∵四边形ABCD为菱形,∴∠ABD=∠ABC=30°.∴OB=2OP.∵OP=OM,∴BO=2OP=2OM.(2)如图2所示:设GH交BD于点N,连接AC,交BD于点Q.∵四边形ABCD是菱形,∴AC⊥BD.∴BD=2BQ=2AB•cos∠ABQ=AB=18.设⊙O的半径为r,则OB=2r,MB=3r.∵EF>HE,∴点E,F,G,H均在菱形的边上.①如图2所示,当点E在AB上时.在Rt△BEM中,EM=BM•tan∠EBM=r.由对称性得:EF=2EM=2r,ND=BM=3r.∴MN=18﹣6r.∴S矩形EFGH=EF•MN=2r(18﹣6r)=24.解得:r1=1,r2=2.当r=1时,EF<HE,∴r=1时,不合题意舍当r=2时,EF>HE,∴⊙O的半径为2.∴BM=3r=6.如图3所示:当点E在AD边上时.BM=3r,则MD=18﹣3r.由对称性可知:NB=MD=6.∴MB=3r=18﹣6=12.解得:r=4.综上所述,⊙O的半径为2或4.(3)解设GH交BD于点N,⊙O的半径为r,则BO=2r.当点E在边BA上时,显然不存在HE或HG与⊙O相切.①如图4所示,点E在AD上时.∵HE与⊙O相切,∴ME=r,DM=r.∴3r+r=18.解得:r=9﹣3.∴OB=18﹣6.②如图5所示;由图形的对称性得:ON=OM,BN=DM.∴OB=BD=9.③如图6所示.∵HG与⊙O相切时,MN=2r.∵BN+MN=BM=3r.∴BN=r.∴DM=FM=GN=BN=r.∴D与O重合.∴BO=BD=18.④如图7所示:∵HE与⊙O相切,∴EM=r,DM=r.∴3r﹣r=18.∴r=9+3.∴OB=2r=18+6.综上所述,当HE或GH与⊙O相切时,OB的长为18﹣6或9或18或18+6.四、填空题21.分析:先看不等号,都是≤,那么要求的不等号也是≤.再看结果,都是前面那个等式的结果的一半,所以要求的结果也应是9的一半,由此即可求解.解:由图中规律可知,a+b≥,因为a+b=9,所以≤.22.分析:要求这三间长方形种牛饲养室的总占地面积的最大值,可设总占地面积为S,中间墙长为x,根据题目所给出的条件列出S与x的关系式,再根据函数的性质求出S的最大值.解:如图,设设总占地面积为S(m2),CD的长度为x(m),由题意知:AB=CD=EF=GH=x,∴BH=48﹣4x,∵0<BH≤50,CD>0,∴0<x<12,∴S=AB•BH=x(48﹣x)=﹣(x﹣24)2+576∴x<24时,S随x的增大而增大,∴x=12时,S可取得最大值,最大值为S=43223.分析:首先找到EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是16﹣x,MF=8,然后在直角三角形MOF中利用勾股定理求得OF的长即可.解答:解:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=16﹣x,MF=8,在直角三角形OMF中,OM2+MF2=OF2即:(16﹣x)2+82=x2解得:x=10故答案为:10.24.分析:①根据规律依次求出即可;②要想确定只需进行3次操作后变为1的所有正整数,关键是确定二次操作后数的大小不能大于4,二次操作时根号内的数必须小于16,而一次操作时正整数255却好满足这一条件,即最大的正整数为255.解:①[]=9,[]=3,[]=1,故答案为:3;②最大的是255,[]=15,[]=3,[]=1,而[]=16,[]=4,[]=2,[]=1,即只需进行3次操作后变为1的所有正整数中,最大的正整数是255,故答案为:255.25.分析:在Rt△OAB中,OA=4,OB=3,用勾股定理计算出AB=5,再根据折叠的性质得BA′=BA=5,CA′=CA,则OA′=BA′﹣OB=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,根据勾股定理得到t2+22=(4﹣t)2,解得t=,则C点坐标为(0,),然后利用待定系数法确定直线BC的解析式.解:∵A(0,4),B(3,0),∴OA=4,OB=3,在Rt△OAB中,AB==5,∵△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,∴BA′=BA=5,CA′=CA,∴OA′=BA′﹣OB=5﹣3=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,∵OC2+OA′2=CA′2,∴t2+22=(4﹣t)2,解得t=,∴C点坐标为(0,),设直线BC的解析式为y=kx+b,把B(3,0)、C(0,)代入得,解得,∴直线BC的解析式为y=﹣x+.故答案为:y=﹣x+.五、解答题26.分析:(1)设第n天销售量开始低于56千克,根据第一天销售量为78千克,后面每增加1天(销售量就减少2千克),列不等式求解即可;(2)根据“销售量×单千克利润=总利润”列方程即可解答.解:(1)设第n天销售量开始低于56千克,根据题意列不等式得,78﹣2n<56,解得:n>11,答:该批发商6月份第12天销售量开始低于56千克.(2)根据题意列方程,20(1﹣m%)•[50(1﹣0.4m%)﹣15]=726,整理得:m2﹣75m+650=0,解得:m1=10,m2=65(不合题意舍去)∴m=10.27.分析:(1)根据旋转的性质得到∠C1BC=∠B1BC=90°,BC1=BC=CB1,根据平行线的判定得到BC1∥CB1,推出四边形BCB1C1是平行四边形,根据平行四边形的性质即可得到结论;(2)过C1作C1E∥B1C于E,于是得到∠C1EB=∠B1CB,由旋转的性质得到BC1=BC=B1C,∠C1BC=∠B1CB,等量代换得到∠C1BC=∠C1EB,根据等腰三角形的判定得到C1B=C1E,等量代换得到C1E=B1C,推出四边形C1ECB1是平行四边形,根据平行四边形的性质即可得到结论;(3)设C1B1与BC之间的距离为h,由已知条件得到=,根据三角形的面积公式得到=,于是得到结论.解:(1)平行,∵把△ABC逆时针旋转90°,得到△A1BC1;再以点C为中心,把△ABC顺时针旋转90°,得到△A2B1C,∴∠C1BC=∠B1BC=90°,BC1=BC=CB1,∴BC1∥CB1,∴四边形BCB1C1是平行四边形,∴C1B1∥BC,故答案为:平行;(2)证明:如图②,过C1作C1E∥B1C,交BC于E,则∠C1EB=∠B1CB,由旋转的性质知,BC1=BC=B1C,∠C1BC=∠B1CB,∴∠C1BC=∠C1EB,∴C1B=C1E,∴C1E=B1C,∴四边形C1ECB1是平行四边形,∴C1B1∥BC;(3)由(2)知C1B1∥BC,设C1B1与BC之间的距离为h,∵C1B1=BC,∴=,∵S=B1C1•h,S=BC•h,∴===,∵△C1BB1的面积为4,∴△B1BC的面积为6,故答案为:6.28.解:(1)由题意得解得∴抛物线的解析式为∴,∴直线的解析式为(2)分两种情况:①点在线段上时,过作轴,垂足为∵∴∵∥∴∴,∴∴②点在线段的延长线上时,过作轴,垂足为∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国气象局在京单位2026年度招聘岗位备考题库及答案详解一套
- 2025年中国科学院海西研究院泉州装备制造研究中心所创新平台业务主管招聘备考题库及完整答案详解一套
- 2025年中国光大银行光大理财社会招聘备考题库附答案详解
- 航空工业成飞2026届校园招聘备考题库及参考答案详解
- 2025年广汉市卫生健康局广汉市卫生健康局下属事业单位公开招聘编外聘用人员13人的备考题库有答案详解
- 2025年西昌市邛海泸山风景名胜区管理局招聘5名执法协勤人员备考题库及1套参考答案详解
- 2025年为淄博市检察机关公开招聘聘用制书记员的备考题库带答案详解
- 河北省保定高碑店市2025-2026学年九年级上学期12月月考道德与法治试题(含答案)
- 北京市密云区2025年九年级上学期语文期末试卷附答案
- 安徽省A10联盟2025-2026年高三上12月月考历史试卷(含答案)
- 2025年军队专业技能岗位文职人员招聘考试(电工)历年参考题库含答案详解(5卷)
- JJG 688-2025汽车排放气体测试仪检定规程
- 济南医院节能管理办法
- 2025至2030中国救生衣和救生衣行业发展趋势分析与未来投资战略咨询研究报告
- 绿化养护物资管理制度
- 护理事业十五五发展规划(2026-2030)
- 2025广西专业技术人员公需科目培训考试答案
- 网络故障模拟与处理能力测试试题及答案
- 2025至2030中国聚四氟乙烯(PTFE)行业经营状况及投融资动态研究报告
- 教育、科技、人才一体化发展
- 营销与客户关系管理-深度研究
评论
0/150
提交评论