版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省民勤三中2026届数学高二上期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面直角坐标系中,已知椭圆的上、下顶点分别为、,左顶点为,左焦点为,若直线与直线互相垂直,则椭圆的离心率为A. B.C. D.2.已知,是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为36,则球的表面积为()A. B.C. D.3.设命题,,则为().A., B.,C., D.,4.已知椭圆上一点到椭圆一个焦点的距离是3,则点到另一个焦点的距离为()A.9 B.7C.5 D.35.在单调递减的等比数列中,若,,则()A.9 B.3C. D.6.若椭圆与直线交于两点,过原点与线段AB中点的直线的斜率为,则A. B.C. D.27.已知{}为等比数列.,则=()A.—4 B.4C.—4或4 D.168.设双曲线:的左、右焦点分别为、,P为C上一点,且,,则双曲线的渐近线方程为()A. B.C. D.9.已知抛物线,为坐标原点,以为圆心的圆交抛物线于、两点,交准线于、两点,若,,则抛物线方程为()A. B.C. D.10.已知点O为坐标原点,抛物线C:的焦点为F,点T在抛物线C的准线上,线段FT与抛物线C的交点为W,,则()A.1 B.C. D.11.已知是上的单调增函数,则的取值范围是A.﹣1b2 B.﹣1b2C.b﹣2或b2 D.b﹣1或b212.已知点是椭圆上一点,点,则的最小值为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆:,圆:,则圆与圆的位置关系是______14.=______.15.曲线在x=1处的切线方程为__________.16.已知圆M过,,且圆心M在直线上.(1)求圆M的标准方程;(2)过点的直线m截圆M所得弦长为,求直线m的方程;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是等差数列,其n前项和为,已知(1)求数列的通项公式:(2)设,求数列的前n项和18.(12分)在平面直角坐标系内,已知的三个顶点坐标分别为(1)求边的垂直平分线所在的直线的方程;(2)若面积为5,求点的坐标19.(12分)已知抛物线的焦点为F,直线l交抛物线于不同的A、B两点.(1)若直线l的方程为,求线段AB的长;(2)若直线l经过点P(-1,0),点A关于x轴的对称点为A',求证:A'、F、B三点共线.20.(12分)已知数列满足,,.(1)证明:数列是等比数列,并求其通项公式;(2)若,求数列的前项和.21.(12分)如图,正方体的棱长为,分别是的中点,点在棱上,().(Ⅰ)三棱锥的体积分别为,当为何值时,最大?最大值为多少?(Ⅱ)若平面,证明:平面平面.22.(10分)已知椭圆的离心率为,椭圆的短轴端点与双曲线的焦点重合,过点的直线与椭圆相交于、两点.(1)求椭圆的方程;(2)若以为直径的圆过坐标原点,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】依题意,直线与直线互相垂直,,,故选2、C【解析】当平面时,三棱锥体积最大,根据棱长与球半径关系即可求出球半径,从而求出表面积.【详解】当平面时,三棱锥体积最大.又,则三棱锥体积,解得;故表面积.故选:C.【点睛】关键点点睛:本题考查三棱锥与球的组合体的综合问题,本题的关键是判断当平面时,三棱锥体积最大.3、B【解析】根据全称命题和特称命题互为否定,即可得到结果.【详解】因为命题,,所以为,.故选:B.4、A【解析】根据椭圆定义求得即可.【详解】由椭圆定义知,点P到另一个焦点的距离为2×6-3=9.故选:A5、A【解析】利用等比数列的通项公式可得,结合条件即求.【详解】设等比数列的公比为,则由,,得,解得或,又单调递减,故,.故选:A.6、D【解析】细查题意,把代入椭圆方程,得,整理得出,设出点的坐标,由根与系数的关系可以推出线段的中点坐标,再由过原点与线段的中点的直线的斜率为,进而可推导出的值.【详解】联立椭圆方程与直线方程,可得,整理得,设,则,从而线段的中点的横坐标为,纵坐标,因为过原点与线段中点的直线的斜率为,所以,所以,故选D.【点睛】该题是一道关于直线与椭圆的综合性题目,涉及到的知识点有直线与椭圆相交时对应的解题策略,中点坐标公式,斜率坐标公式,属于简单题目.7、B【解析】根据题意先求出公比,进而用等比数列通项公式求得答案.【详解】由题意,设公比为q,则,则.故选:B.8、B【解析】根据双曲线定义结合,求得,在中,利用余弦定理求得之间的关系,即可得出答案.【详解】解:因为在双曲线中,因为,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以双曲线的渐近线方程为.故选:B.9、C【解析】设圆的半径为,根据已知条件可得出关于的方程,求出正数的值,即可得出抛物线的方程.【详解】设圆的半径为,抛物线的准线方程为,由勾股定理可得,因为,将代入抛物线方程得,可得,不妨设点,则,所以,,解得,因此,抛物线的方程为.故选:C.10、B【解析】根据平面向量共线的性质,结合抛物线的定义进行求解即可.【详解】由已知得:,该抛物线的准线方程为:,所以设,因为,所以,由抛物线的定义可知:,故选:B11、A【解析】利用三次函数的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题【详解】∵∴∵函数是上的单调增函数∴在上恒成立∴,即.∴故选A.【点睛】可导函数在某一区间上是单调函数,实际上就是在该区间上(或)(在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式来进行求解.12、D【解析】设,则,.所以当时,的最小值为.故选D.二、填空题:本题共4小题,每小题5分,共20分。13、相交【解析】把两个圆的方程化为标准方程,分别找出两圆的圆心坐标和半径,利用两点间的距离公式求出两圆心的距离,与半径和与差的关系比较即可知两圆位置关系.【详解】化为,化为,则两圆圆心分别为:,,半径分别为:,圆心距为,,所以两圆相交.故答案为:相交.14、【解析】根据被积函数()表示一个半圆,利用定积分的几何意义即可得解.【详解】被积函数()表示圆心为,半径为2的圆的上半部分,所以.故答案为:.【点睛】本题考查了利用定积分的几何意义来求定积分,在用该方法求解时需注意被积函数的在给定区间内的函数值符号,本题属于中档题.15、【解析】根据导数的几何意义求切线方程的斜率并求出,再由点斜式写出切线方程即可.【详解】由题设,,则,而,所以在x=1处的切线方程为,即.故答案为:.16、(1)(2)或【解析】(1)首先由条件设圆的标准方程,再将圆上两点代入,即可求得圆的标准方程;(2)分斜率不存在和存在两种情况,分别根据弦长公式,求得直线方程.【小问1详解】圆心在直线上,设圆的标准方程为:,圆过点,,,解得圆的标准方程为【小问2详解】①当斜率不存在时,直线m的方程为:,直线m截圆M所得弦长为,符合题意②当斜率存在时,设直线m:,圆心M到直线m的距离为根据垂径定理可得,,,解得直线m方程为或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用等差数列的基本量,结合已知条件,列出方程组,求得首项和公差,即可写出通项公式;(2)根据(1)中所求,结合裂项求和法,即可求得.【小问1详解】因为是等差数列,其n前项和为,已知,设其公差为,故可得:,,解得,又,故.【小问2详解】由(1)知,,又,故.即.18、(1);(2)或【解析】(1)由题意直线的斜率公式,两直线垂直的性质,求出的斜率,再用点斜式求直线的方程(2)根据面积为5,求得点到直线的距离,再利用点到直线的距离公式,求得的值【详解】解:(1),,的中点的坐标为,又设边的垂直平分线所在的直线的斜率为则,可得的方程为,即边的垂直平分线所在的直线的方程(2)边所在的直线方程为设边上的高为即点到直线的距离为且解得解得或,点的坐标为或19、(1)8;(2)证明见解析.【解析】(1)联立直线与抛物线方程,应用韦达定理及弦长公式求线段AB的长;(2)设为,联立抛物线由韦达定理可得,,应用两点式判断是否为0即可证结论.【小问1详解】由题设,联立直线与抛物线方程可得,则,,∴,,所以.【小问2详解】由题设,,又直线l经过点P(-1,0),此时直线斜率必存在且不为0,可设为,联立抛物线得:,则,,又,故,而,所以,所以A'、F、B三点共线.20、(1)证明见解析,;(2).【解析】(1)由已知条件,可得为常数,从而得证数列是等比数列,进而可得数列的通项公式;(2)由(1)可得,又,所以,所以,利用错位相减法即可求解数列的前项和.【小问1详解】证明:由题意,因为,,,所以,,所以数列是以2为首项,3为公比的等比数列,所以;【小问2详解】解:由(1)可得,又,所以,所以,所以,所以,,所以,所以.21、(Ⅰ),.(Ⅱ)见解析.【解析】(Ⅰ)由题可知,,由和,结合基本不等式可求最值;(Ⅱ)连接交于点,则为的中点,可得为中点,易证得,得平面,所以,进而可证得,,所以平面EFM,因为平面,从而得证.【详解】(Ⅰ)由题可知,,.所以(当且仅当,即时等号成立)所以当时,最大,最大值为.(Ⅱ)连接交于点,则为的中点,因为平面,平面平面,所以,所以为中点.连接,因为为中点,所以,因为,所以.因为平面,平面,所以,因为,所以平面,又平面,所以.同理,因为,所以平面EFM,因为平面,所以平面平面B1D1M.22、(1);(2)【解析】(1)由离心率得到,由椭圆的短轴端点与双曲线的焦点重合,得到,进而可求出结果;(2)先由题意,得直线的斜率存在,设直线的方程为,联立直线与椭圆方程,设,根据韦达定理,得到,,再由以为直径的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 军工企业物资供应商专管员考核题库
- 文化演出策划岗位面试题含答案
- 华为人力资源经理面试题详解及答案
- 客户成功经理面试题集及答案解析
- 财务会计面试题及标准答案
- 2025年高效电池研发项目可行性研究报告
- 固废分选员的岗位知识与技能考试题库
- 茶歇服务生绩效考核与评估
- 华为人力资源专员考核内容详解
- 国家电网招聘面试题及应对策略
- 2025年植物标本采集合同协议
- 2025天津市第二批次工会社会工作者招聘41人考试笔试参考题库及答案解析
- 2025湖北武汉市蔡甸区总工会招聘工会协理员4人笔试试题附答案解析
- 胆管重复畸形健康宣教
- 2025秋人教精通版英语小学五年级上册知识点及期末测试卷及答案
- 校园反恐防暴2025年培训课件
- 2026年安徽城市管理职业学院单招职业技能测试模拟测试卷附答案
- 2025甘肃省水务投资集团有限公司招聘企业管理人员笔试备考题库附答案解析
- 2025山东壹通无人机系统有限公司暨三航无人系统技术(烟台)有限公司社会招聘笔试现场及笔试历年参考题库附带答案详解
- 2025年秋季学期国家开放大学《人文英语4》期末机考精准复习题库
- 神经内科三基考试题库及答案
评论
0/150
提交评论