版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川省眉山市仁寿县铧强中学数学高一上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若点在角的终边上,则的值为A. B.C. D.2.设,则函数的零点所在的区间为()A. B.C. D.3.已知两个正实数,满足,则的最小值是()A. B.C.8 D.34.函数在区间上的最大值为A.2 B.1C. D.1或5.和函数是同一函数的是()A. B.C. D.6.下列函数中与是同一函数的是()(1)(2)(3)(4)(5)A.(1)(2) B.(2)(3)C.(2)(4) D.(3)(5)7.已知定义域为R的函数在单调递增,且为偶函数,若,则不等式的解集为()A. B.C. D.8.已知角x的终边上一点的坐标为(sin,cos),则角x的最小正值为()A. B.C. D.9.已知函数的图象上的每一点的纵坐标扩大到原来的倍,横坐标扩大到原来的倍,然后把所得的图象沿轴向右平移个单位,这样得到的曲线和的图象相同,则已知函数的解析式为A B.C. D.10.若圆上有且只有两个点到直线的距离等于1,则半径r的取值范围是A.(4,6) B.[4,6]C.(4,5) D.(4,5]二、填空题:本大题共6小题,每小题5分,共30分。11.设,则________.12.已知,点在直线上,且,则点的坐标为________13.给出下列四个命题:①函数y=2sin(2x-)的一条对称轴是x=;②函数y=tanx的图象关于点(,0)对称;③正弦函数在第一象限内为增函数;④存在实数α,使sinα+cosα=.以上四个命题中正确的有____(填写正确命题前面的序号).14.已知集合,,则__________15.已知一组样本数据x1,x2,…,x10,且++…+=2020,平均数,则该组数据的标准差为_________.16.如图所示,将等腰直角沿斜边上的高折成一个二面角,使得.那么这个二面角大小是_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,ABCD是一块边长为100米的正方形地皮,其中ATS是一座半径为90米的扇形小山,P是弧TS上一点,其余部分都是平地.现有一开发商想在平地上建造一个两边分别落在BC与CD上的长方形停车场PQCR,求长方形停车场PQCR面积的最大值.18.设函数,.用表示,中的较大者,记为.已知关于的不等式的解集为(1)求实数,的值,并写出的解析式;19.设函数是定义在上的奇函数,当时,(1)确定实数的值并求函数在上的解析式;(2)求满足方程的的值.20.计算(1)(2)21.已知函数(且)的图象过点(1)求的值.(2)若.(i)求的定义域并判断其奇偶性;(ii)求的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据题意,确定角的终边上点的坐标,再利用三角函数定义,即可求解,得到答案【详解】由题意,点在角的终边上,即,则,由三角函数的定义,可得故选A【点睛】本题主要考查了三角函数的定义的应用,其中解答中确定出角的终边上点的坐标,利用三角函数的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题.2、B【解析】根据的单调性,结合零点存在性定理,即可得出结论.【详解】在单调递增,且,根据零点存在性定理,得存在唯一的零点在区间上.故选:B【点睛】本题考查判断函数零点所在区间,结合零点存在性定理的应用,属于基础题.3、A【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,则,当且仅当,即时,等号成立.故选:【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4、A【解析】利用同角三角函数的基本关系化简函数f(x)的解析式为﹣(sinx﹣1)2+2,根据二次函数的性质,求得函数f(x)的最大值【详解】∵函数f(x)=cos2x+2sinx=1﹣sin2x+2sinx=﹣(sinx﹣1)2+2,∴sinx≤1,∴当sinx=1时,函数f(x)取得最大值为2,故选A【点睛】本题主要考查同角三角函数的基本关系,正弦函数的定义域和值域,二次函数的性质,属于中档题5、D【解析】根据相同的函数定义域,对应法则,值域都相同可知ABC不符合要求,D满足.【详解】的定义域为,值域为,对于A,与的对应法则不同,故不是同一个函数;对于B,的值域为,故不是同一个函数;对于C,的定义域为,故不是同一个函数;对于D,,故与是同一个函数.故选:D6、C【解析】将5个函数的解析式化简后,根据相等函数的判定方法分析,即可得出结果.【详解】(1)与定义域相同,对应关系不同,不是同一函数;(2)与的定义域相同,对应关系一致,是同一函数;(3)与定义与相同,对应关系不同,不是同一函数;(4)与定义相同,对应关系一致,是同一函数;(5)与对应关系不同,不是同一函数;故选:C.7、D【解析】根据题意,由函数为偶函数分析可得函数的图象关于直线对称,结合函数的单调性以及特殊值分析可得,解可得的取值范围,即可得答案【详解】解:根据题意,函数为偶函数,则函数的图象关于直线对称,又由函数在,单调递增且f(3),则,解可得:,即不等式的解集为;故选:D8、B【解析】先根据角终边上点的坐标判断出角的终边所在象限,然后根据三角函数的定义即可求出角的最小正值【详解】因为,,所以角的终边在第四象限,根据三角函数的定义,可知,故角的最小正值为故选:B【点睛】本题主要考查利用角的终边上一点求角,意在考查学生对三角函数定义的理解以及终边相同的角的表示,属于基础题9、B【解析】分析:将.的图象轴向左平移个单位,然后把所得的图象上的每一点的纵坐标变为原来的四分之一倍,横坐标变为原来的二分之一倍,即可得到函数的图象,从而可得结果.详解:利用逆过程:将.的图象轴向左平移个单位,得到的图象;将的图象上的每一点的纵坐标变为原来的四分之一倍得到的图象;将的图象上的每一点的横坐标变为原来的四分之一倍得到的图象,所以函数的解析式为,故选B.点睛:本题主要考查了三角函数图象变换,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.10、A【解析】由圆,可得圆心的坐标为圆心到直线的距离为:由得所以的取值范围是故答案选点睛:本题的关键是理解“圆上有且只有两个点到直线的距离等于1”,将其转化为点到直线的距离,结合题意计算求得结果二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】先求出,再求的值即可【详解】解:由题意得,,所以,故答案为:212、,【解析】设点,得出向量,代入坐标运算即得的坐标,得到关于的方程,从而可得结果.【详解】设点,因为点在直线,且,,或,,即或,解得或;即点的坐标是,.【点睛】本题考查了平面向量线性运算的坐标表示以及平面向量的共线问题,意在考查对基础知识的掌握与应用,是基础题.13、①②【解析】对于①,将x=代入得是对称轴,命题正确;对于②,由正切函数的图象可知,命题正确;对于③,正弦函数在上是增函数,但在第一象限不能说是增函数,所以③不正确;对于④,,最大值为,不正确;故填①②.14、【解析】因为集合,,所以,故答案为.15、9【解析】根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案【详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:9.16、【解析】首先利用余弦定理求得的长度,然后结合三角形的特征确定这个二面角大小即可.【详解】由已知可得为所求二面角的平面角,设等腰直角的直角边长度为,则,由余弦定理可得:,则在中,,即所求二面角大小是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、14050−9000(m2)【解析】设,然后表示出,进而表示出矩形PQCR的面积,再根据三角函数的相关知识化简求值,解决问题.详解】解:如图,连接AP,设,延长RP交AB于M,则,,∴,.∴矩形PQCR的面积为设,则,∴,∴当时,.,故长方形停车场PQCR面积的最大值是.18、(1),(2)【解析】(1)先由一元二次不等式的性质求出的值,再根据的图象得出其解析式;(2)将问题转化为,再解对数不等式得出实数的取值范围【小问1详解】∵的解集为,∴方程的两根分别为和2,由韦达定理可得:,解得,∴令,解得或,作出的图象如下图所示:则【小问2详解】由(1)得,当时,有最小值,即,∵,使得,∴只需即可,∴,∴,得,故19、(1),(2)或或【解析】(1)利用奇函数定义即可得到的值及函数在上的解析式;(2)分成两类,解指数型方程即可得到结果.【详解】(1)是定义在上的奇函数当时,,当时,设,则(2)当时,,令,得得解得是定义在上的奇函数所以当x<0时的根为:所以方程的根为:【点睛】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围20、(1)6(2)【解析】(1)将根式转化为分数指数幂,然后根据幂的运算性质即可化简求值;(2)利用对数的运算性质即可求解.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年医疗医院医疗废物检测合同
- 2025年社交网络平台安全监管项目可行性研究报告
- 2025年高端定制家具生产企业项目可行性研究报告
- 2025年多功能文化活动中心建设项目可行性研究报告
- 2025年社交网络数据分析平台项目可行性研究报告
- 2025年新能源车基础设施升级项目可行性研究报告
- 中俄导航协议书
- 网贷中介合同范本
- 停工结算协议书
- 云计算环境下的渗透测试工程师面试要点
- 《医学影像诊断报告书写指南》(2025版)
- 高校物业安全培训内容课件
- (正式版)DB33∕T 1430-2025 《海塘安全监测技术规程》
- 医药竞聘地区经理汇报
- 水库调度操作规程模板
- 产科护士长年终总结
- 酒店情况诊断报告
- 2025年夏季山东高中学业水平合格考地理试卷试题(含答案)
- DBJ04-T483-2025 海绵型城市道路与广场设计标准
- 农药运输储存管理制度
- TD/T 1036-2013土地复垦质量控制标准
评论
0/150
提交评论