南通市重点中学2026届高二上数学期末联考模拟试题含解析_第1页
南通市重点中学2026届高二上数学期末联考模拟试题含解析_第2页
南通市重点中学2026届高二上数学期末联考模拟试题含解析_第3页
南通市重点中学2026届高二上数学期末联考模拟试题含解析_第4页
南通市重点中学2026届高二上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

南通市重点中学2026届高二上数学期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若抛物线焦点坐标为,则的值为A. B.C.8 D.42.若方程表示焦点在轴上的双曲线,则角所在象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限3.已知直线平分圆C:,则最小值为()A.3 B.C. D.4.抛物线的焦点为F,准线为l,点P是准线l上的动点,若点A在抛物线C上,且,则(O为坐标原点)的最小值为()A. B.C. D.5.已知向量是两两垂直的单位向量,且,则()A.5 B.1C.-1 D.76.三个实数构成一个等比数列,则圆锥曲线的离心率为()A. B.C.或 D.或7.已知函数,则等于()A.0 B.2C. D.8.在圆内,过点的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A. B.C. D.9.已知直线l:的倾斜角为,则()A. B.1C. D.-110.已知直线与圆相交于,两点,则的取值范围为()A. B.C. D.11.设,“命题”是“命题”的()A.充分且不必要条件 B.必要且不充分条件C.充要条件 D.既不充分也不必要条件12.已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为()A. B.C.1 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知AB为圆O:的直径,点P为椭圆上一动点,则的最小值为______14.已知向量,,,则___________.15.总书记在2021年2月25日召开的全国脱贫攻坚总结表彰大会上发表重要讲话,庄严宣告,在迎来中国共产党成立一百周年的重要时刻,我国脱贫攻坚取得了全面胜利.在脱贫攻坚过程中,为了解某地农村经济情况,工作人员对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下列结论中所存确结论的序号是____________①该地农户家庭年收入低于4.5万元的农户比率估计为6%;②该地农户家庭年收入不低于10.5万元的农户比率估计为10%;③估计该地农户家庭年收入的平均值不超过6.5万元;④估计该地有一半以上农户,其家庭年收入介于4.5万元至8.5万元之间16.已知曲线,则曲线在点处的切线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的离心率为,短轴长为2,F为右焦点(1)求椭圆的方程;(2)在x轴上是否存在一点M,使得过F的任意一条直线l与椭圆的两个交点A,B,恒有,若存在求出M的坐标,若不存在,说明理由18.(12分)已知函数,(),(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求a,b的值(2)当时,若函数在区间[k,2]上的最大值为28,求k的取值范围19.(12分)已知等差数列的前n项和为,且.(1)求数列的通项公式及;(2)设,求数列的前n项和.20.(12分)已知直线方程为(1)若直线的倾斜角为,求的值;(2)若直线分别与轴、轴的负半轴交于、两点,为坐标原点,求面积的最小值及此时直线的方程21.(12分)已知等差数列的前项和为,且,(1)求数列的通项公式;(2)若数列满足,求数列的前项和22.(10分)某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,所得到如图所示的频率分布直图(1)求图中实数的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先把抛物线方程整理成标准方程,进而根据抛物线的焦点坐标,可得的值.【详解】抛物线的标准方程为,因为抛物线的焦点坐标为,所以,所以,故选A.【点睛】该题考查的是有关利用抛物线的焦点坐标求抛物线的方程的问题,涉及到的知识点有抛物线的简单几何性质,属于简单题目.2、D【解析】根据题意得出的符号,进而得到的象限.【详解】由题意,,所以在第四象限.故选:D.3、D【解析】根据直线过圆心求得,再利用基本不等式求和的最小值即可.【详解】根据题意,直线过点,即,则,当且仅当,即时取得最小值.故选:D.4、D【解析】依题意得点坐标,作点关于的对称点,则,求即为最小值【详解】如图所示:作点关于的对称点,连接,设点,不妨设,由题意知,直线l方程为,则,得所以,得,所以由,当三点共线时取等号,又所以最小值为故选:D5、B【解析】根据单位向量的定义和向量的乘法运算计算即可.【详解】因为向量是两两垂直的单位向量,且所以.故选:B6、D【解析】根据三个实数构成一个等比数列,解得,然后分,讨论求解.【详解】因为三个实数构成一个等比数列,所以,解得,当时,方程表示焦点在x轴上的椭圆,所以,所以,当时,方程表示焦点在y轴上的双曲线,所以,所以,故选:D7、D【解析】先通过诱导公式将函数化简,进而求出导函数,然后算出答案.【详解】由题意,,故选:D.8、D【解析】由题,求得圆的圆心和半径,易知最长弦,最短弦为过点与垂直的弦,再求得BD的长,可得面积.【详解】圆化简为可得圆心为易知过点的最长弦为直径,即而最短弦为过与垂直的弦,圆心到的距离:所以弦所以四边形ABCD的面积:故选:D9、A【解析】由倾斜角求出斜率,列方程即可求出m.【详解】因为直线l的倾斜角为,所以斜率.所以,解得:.故选:A10、C【解析】求得直线恒过的定点,找出弦长取得最值的状态,利用弦长公式求解即可.【详解】因直线方程为:,整理得,故该直线恒过定点,又,故点在圆内,又圆的圆心为则,此时直线过圆心;当直线与直线垂直时,取得最小值,此时.故的取值范围为.故选:.11、A【解析】根据充分、必要条件的概念理解,可得结果.【详解】由,则或所以“”可推出“或”但“或”不能推出“”故命题是命题充分且不必要条件故选:A【点睛】本题主要考查充分、必要条件的概念理解,属基础题.12、D【解析】由题意知,抛物线的准线l:y=-1,过A作AA1⊥l于A1,过B作BB1⊥l于B1,设弦AB的中点为M,过M作MM1⊥l于M1.则|MM1|=.|AB|≤|AF|+|BF|(F为抛物线的焦点),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x轴的距离d≥2.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】方法一:通过对称性取特殊位置,设出P的坐标,利用向量的数量积转化求解最小值即可方法二:利用向量的数量积,转化为向量的和与差的平方,通过圆的特殊性,转化求解即可【详解】解:方法一:依据对称性,不妨设直径AB在x轴上,x,,,从而故答案为2方法二:,而,则答案2故答案为2【点睛】本题考查直线与圆的位置关系、椭圆方程的几何性质考查转化思想以及计算能力14、2【解析】由空间向量数量积的坐标运算可得答案.【详解】因为,,,所以,.故答案为:2.15、①②④【解析】利用频率分布直方图中频率的求解方法,通过求解频率即可判断选项①,②,④,利用平均值的计算方法,即可判断选项③【详解】解:对于①,该地农户家庭年收入低于4.5万元的农户比率为,故选项①正确;对于②,该地农户家庭年收入不低于10.5万元的农户比率为,故选项②正确;对于③,估计该地农户家庭年收入的平均值为万元,故选项③错误;对于④,家庭年收入介于4.5万元至8.5万元之间的频率为,故估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间,故选项④正确故答案为:①②④16、【解析】利用导数求出切线的斜率即得解.【详解】解:由题得,所以切线的斜率为,所以切线的方程为即.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在点M满足条件,点M的坐标为.【解析】(1)根据给定条件直接计算出即可求解作答.(2)假定存在点,当直线l与x轴不重合时,设出l的方程,与椭圆C的方程联立,借助、斜率互为相反数计算得解,再验证直线l与x轴重合的情况即可作答.【小问1详解】依题意,,而离心率,即,解得,所以椭圆C的方程为:.【小问2详解】由(1)知,,假定存在点满足条件,当直线与x轴不重合时,设l的方程为:,由消去x并整理得:,设,则有,因,则直线、斜率互为相反数,于是得:,整理得,即,则有,即,而m为任意实数,则,当直线l与x轴重合时,点A,B为椭圆长轴的两个端点,点也满足,所以存在点M满足条件,点M的坐标为.【点睛】思路点睛:解答直线与椭圆相交的问题,常把直线与椭圆的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.18、【解析】(1)求a,b的值,根据曲线与曲线在它们的交点处具有公共切线,可知切点处的函数值相等,切点处的斜率相等,列方程组,即可求出的值;(2)求k的取值范围.,先求出的解析式,由已知时,设,求导函数,确定函数的极值点,进而可得时,函数在区间上的最大值为;时,函数在在区间上的最大值小于,由此可得结论试题解析:(1),因为曲线与曲线在它们的交点处具有公共切线,所以,所以;(2)当时,,,,令,则,令,得,所以在与上单调递增,在上单调递减,其中为极大值,所以如果在区间最大值为,即区间包含极大值点,所以考点:导数的几何意义,函数的单调性与最值19、(1)(2)【解析】(1)设等差数列的公差为,根据已知条件可得出关于、的方程组,解出这两个量的值,利用等差数列的通项公式可求得数列的通项公式,利用等差数列前n项和公式求出;(2)求得,利用裂项相消法即可求得.【小问1详解】设等差数列的公差为,由,解得,所以,故数列的通项公式,;【小问2详解】由(1)可得,所以,所以.20、(1);(2)面积的最小值为,此时直线的方程为.【解析】(1)由直线的斜率和倾斜角的关系可求得的值;(2)求出点、的坐标,根据已知条件求出的取值范围,求出的面积关于的表达式,利用基本不等式可求得面积的最小值,利用等号成立的条件可求得的值,即可得出直线的方程.【小问1详解】解:由题意可得.【小问2详解】解:在直线的方程中,令可得,即点,令可得,即点,由已知可得,解得,所以,,当且仅当时,等号成立,此时直线的方程为,即.21、(1);(2).【解析】(1)设等差数列的公差为,根据已知条件可得出关于、的方程组,解出这两个量的值,即可求得数列的通项公式;(2)求得,利用裂项相消法可求得.【小问1详解】解:设等差数列公差为,,【小问2详解】解:,.22、(1)a=0.03;(2)544人;(3).【解析】(1)根据图中所有小矩形的面积之和等于1求解.

(2)根据频率分布直方图,得到成绩不低于60分的频率,再根据该校高一年级共有学生640人求解.

(3)由频率分布直方图得到成绩在[40,50)和[90,100]分数段内的人数,先列举出从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生的基本事件总数,再得到两名学生的数学成绩之差的绝对值不大于10”的基本事件数,代入古典概型概率求解.【详解】(1)∵图中所有小矩形的面积之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.

(2)根据频率分布直方图,成绩不低于60分的频率为1−10×(0.005+0.01)=0.85,

∵该校高一年级共有学生640人,

∴由样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为640×0.85=544人.

(3)成绩在[40,50)分数段内的人数为40×0.05=2人,分别记为A,B,

成绩在[90,100]分数段内的人数为40×0.1=4人,分别记为C,D,E,F.

若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取两名学生,

则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),

(C,F),(D,E),(D,F),(E,F)共15种.

如果两名

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论