广东省阳山中学2026届数学高一上期末复习检测模拟试题含解析_第1页
广东省阳山中学2026届数学高一上期末复习检测模拟试题含解析_第2页
广东省阳山中学2026届数学高一上期末复习检测模拟试题含解析_第3页
广东省阳山中学2026届数学高一上期末复习检测模拟试题含解析_第4页
广东省阳山中学2026届数学高一上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省阳山中学2026届数学高一上期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若函数在上有3个零点,则m的取值范围为()A. B.C. D.2.已知是定义在区间上的奇函数,当时,.则关于的不等式的解集为A. B.C. D.3.已知函数在[-2,1]上具有单调性,则实数k的取值范围是()A.k≤-8 B.k≥4C.k≤-8或k≥4 D.-8≤k≤44.已知函数,函数,若有两个零点,则m的取值范围是()A. B.C. D.5.点到直线的距离等于()A. B.C.2 D.6.已知等边两个顶点,且第三个顶点在第四象限,则边所在的直线方程是A. B.C. D.7.设定义在上的函数满足:当时,总有,且,则不等式的解集为()A. B.C. D.8.已知集合A={x|x<2},B={x≥1},则A∪B=()A. B.C. D.R9.已知集合,,则()A. B.C. D.10.已知集合,.则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.定义在上的函数满足则________.12.古希腊数学家欧几里得所著《几何原本》中的“几何代数法”,很多代数公理、定理都能够通过图形实现证明,并称之为“无字证明”.如图,O为线段中点,C为上异于O的一点,以为直径作半圆,过点C作的垂线,交半圆于D,连结,过点C作的垂线,垂足为E.设,则图中线段,线段,线段_______;由该图形可以得出的大小关系为___________.13.如果实数满足条件,那么的最大值为__________14.已知,若是的充分不必要条件,则的取值范围为______15.已知扇形的弧长为6,圆心角弧度数为2,则其面积为______________.16.正三棱锥中,,则二面角的大小为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,解不等式;(2)若不等式在上恒成立,求实数的取值范围.18.已知函数,函数为R上的奇函数,且.(1)求的解析式:(2)判断在区间上的单调性,并用定义给予证明:(3)若的定义域为时,求关于x的不等式的解集.19.设,关于的二次不等式的解集为,集合,满足,求实数的取值范围.20.已知函数.(1)若为偶函数,求实数m的值;(2)当时,若不等式对任意恒成立,求实数a的取值范围;(3)当时,关于x的方程在区间上恰有两个不同的实数解,求实数m的取值范围.21.已知函数.(1)求的值;你能发现与有什么关系?写出你的发现并加以证明:(2)试判断在区间上的单调性,并用单调性的定义证明.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】画出函数图像,分解因式得到,有一个解故有两个解,根据图像得到答案.【详解】画出函数的图像,如图所示:当时,即,有一个解;则有两个解,根据图像知:故选:【点睛】本题考查了函数的零点问题,画出函数图像,分解因式是解题的关键.2、A【解析】分析:根据函数奇偶性的性质将不等式进行转化为一般的不等式求解即可详解:∵,函数f(x)为奇函数,∴,又f(x)是定义在[−1,1]上的减函数,∴,即,解得∴不等式的解集为故选A点睛:解题的关键是根据函数的奇偶性将不等式化为或的形式,然后再根据单调性将函数不等式化为一般的不等式求解,解题时不要忘了函数定义域的限制3、C【解析】根据二次函数的单调性和对称轴之间的关系,建立条件求解即可.【详解】函数对称轴为,要使在区间[-2,1]上具有单调性,则或,∴或综上所述的范围是:k≤-8或k≥4.故选:C.4、A【解析】存在两个零点,等价于与的图像有两个交点,数形结合求解.【详解】存在两个零点,等价于与的图像有两个交点,在同一直角坐标系中绘制两个函数的图像:由图可知,当直线在处的函数值小于等于1,即可保证图像有两个交点,故:,解得:故选:A.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.5、C【解析】由点到直线的距离公式求解即可.【详解】解:由点到直线的距离公式得,点到直线的距离等于.故选:C【点睛】本题考查了点到直线的距离公式,属基础题.6、C【解析】如图所示,直线额倾斜角为,故斜率为,由点斜式得直线方程为.考点:直线方程.7、A【解析】将不等式变形后再构造函数,然后利用单调性解不等式即可.【详解】由,令,可知当时,,所以在定义域上单调递减,又,即,所以由单调性解得.故选:A8、D【解析】利用并集定义直接求解即可【详解】∵集合A={x|x<2},B={x≥1},∴A∪B=R.故选D【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题9、D【解析】利用对数函数与指数函数的性质化简集合,再根据集合交集的定义求解即可.【详解】因为,,所以,,则,故选:D.10、C【解析】直接利用交集的运算法则即可.【详解】∵,,∴.故选:.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】表示周期为3的函数,故,故可以得出结果【详解】解:表示周期为3的函数,【点睛】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题12、①.②.【解析】利用射影定理求得,结合图象判断出的大小关系.【详解】在中,由射影定理得,即.在中,由射影定理得,即根据图象可知,即.故答案为:;13、1【解析】先根据约束条件画出可行域,再利用几何意义求最值,表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可【详解】先根据约束条件画出可行域,当直线过点时,z最大是1,故答案为1【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题14、【解析】根据不等式的解法求出的等价条件,结合充分不必要条件的定义建立不等式关系即可【详解】由得得或,由得或,得或,若是的充分不必要条件,则即得,又,则,即实数的取值范围是,故填:【点睛】本题主要考查充分条件和必要条件的应用,求出不等式的等价条件结合充分条件和必要条件的定义进行转化是解决本题的关键,为基础题15、9【解析】根据扇形的弧长是6,圆心角为2,先求得半径,再代入公式求解.【详解】因为扇形的弧长是6,圆心角为2,所以,所以扇形的面积为,故答案为:9.16、【解析】取中点为O,连接VO,BO在正三棱锥中,因为,所以,所以=,所以三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据对数函数的定义域及单调性求解即可;(2)由题意原问题转化为在上恒成立,分与两种情况分类讨论,求出最值解不等式即可.【详解】(1)时,函数定义域为解得不等式的解集为(2)设,由题意知,解得,在上恒成立在上恒成立令,的图象是开口向下,对称轴方程为的抛物线.①时,上恒成立等价于解得,这与矛盾.②当时,在上恒成立等价于解得或又综上所述,实数的取值范围是【点睛】关键点点睛:由题意转化为在上恒成立,分类讨论去掉对数符号,转化为二次函数在上最大值或最小值,是解题的关键所在,属于中档题.18、(1);(2)单调递增.证明见解析;(3)【解析】(1)列方程组解得参数a、b,即可求得的解析式;(2)以函数单调性定义去证明即可;(3)依据奇函数在上单调递增,把不等式转化为整式不等式即可解决.【小问1详解】由题意可知,即,解之得,则,经检验,符合题意.【小问2详解】在区间上单调递增.设任意,且,则由,且,可得则,即故在区间上单调递增.【小问3详解】不等式可化为等价于,解之得故不等式的解集为19、【解析】由题意,求出方程的两根,讨论的正负,确定二次不等式的解集A的形式,然后结合数轴列出不等式求解即可得答案.【详解】解:由题意,令,解得两根为,由此可知,当时,解集,因为,所以的充要条件是,即,解得;当时,解集,因为,所以的充要条件是,即,解得;综上,实数的取值范围为.20、(1)-1;(2);(3)【解析】(1)根据偶函数解得:m=-1,再用定义法进行证明;(2)记,判断出在上单增,列不等式组求出实数a的取值范围;(3)先判断出在R上单增且,令,把问题转化为在上有两根,令,,利用图像有两个交点,列不等式求出实数m的取值范围.【小问1详解】定义域为R.因为为偶函数,所以,即,解得:m=-1.此时,所以所以偶函数,所以m=-1.【小问2详解】当时,不等式可化为:,即对任意恒成立.记,只需.因为在上单增,在上单增,所以在上单增,所以,所以,解得:,即实数a的取值范围为.【小问3详解】当时,在R上单增,在R上单增,所以在R上单增且.则可化为.又因为在R上单增,所以,换底得:,即.令,则,问题转化为在上有两根,即,令,,分别作出图像如图所示:只需,解得:.即实数m的取值范围为.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论