版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省宣威市六中2026届高一上数学期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片的数字之积为偶数的概率为()A. B.C. D.2.已知函数的定义域为,若是奇函数,则A. B.C. D.3.在人类用智慧架设的无数座从已知通向未知的金桥中,用二分法求方程的近似解是其中璀璨的一座.已知为锐角的内角,满足,则()A. B.C. D.4.已知函数,则函数()A.有最小值 B.有最大值C有最大值 D.没有最值5.已知函数是定义在上的奇函数,当时,,则当时,的表达式是()A. B.C. D.6.函数的最大值为()A. B.C.2 D.37.棱长为1的正方体可以在一个棱长为的正四面体的内部任意地转动,则的最小值为A. B.C. D.8.若实数满足,则的最小值为()A.1 B.C.2 D.49.若函数则下列说法错误的是()A.是奇函数B.若在定义域上单调递减,则或C.当时,若,则D.若函数有2个零点,则10.的零点所在区间为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象过点,则________12.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.13.函数零点的个数为______.14.已知定义在R上的函数满足,且当时,,若对任都有,则m的取值范围是_________15.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为__________.16.是第___________象限角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义域为的奇函数,当时,.(1)求出函数在上解析式;(2)若与有3个交点,求实数的取值范围.18.在新型冠状病毒感染的肺炎治疗过程中,需要某医药公司生产的某种药品.此药品的年固定成本为200万元,每生产x千件需另投入成本,当年产量不足60千件时,(万元),当年产量不小于60千件时,(万元).每千件商品售价为50万元,在疫情期间,该公司生产的药品能全部售完(1)写出利润(万元)关于年产量x(千件)的函数解析式;(2)该公司决定将此药品所获利润的10%用来捐赠防疫物资,当年产量为多少千件时,在这一药品的生产中所获利润最大?此时可捐赠多少万元的物资款?19.如图,天津之眼,全称天津永乐桥摩天轮,是世界上唯一一个桥上瞰景摩天轮,是天津的地标之一.永乐桥分上下两层,上层桥面预留了一个长方形开口,供摩天轮轮盘穿过,摩天轮的直径为110米,外挂装48个透明座舱,在电力的驱动下逆时针匀速旋转,转一圈大约需要30分钟.现将某一个透明座舱视为摩天轮上的一个点,当点到达最高点时,距离下层桥面的高度为113米,点在最低点处开始计时.(1)试确定在时刻(单位:分钟)时点距离下层桥面的高度(单位:米);(2)若转动一周内某一个摩天轮透明座舱在上下两层桥面之间的运行时间大约为5分钟,问上层桥面距离下层桥面的高度约为多少米?20.(1)写出下列两组诱导公式:①关于与的诱导公式;②关于与的诱导公式.(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.21.化简计算:(1)计算:;(2)化简:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】从4张卡片上分别写有数字1,2,3,4中随机抽取2张的基本事件有:12,13,14,23,24,34,一共6种,其中数字之积为偶数的有:12,14,23,24,34一共有5种,所以取出的2张卡片的数字之积为偶数的概率为,故选:D2、D【解析】由为奇函数,可得,求得,代入计算可得所求值【详解】是奇函数,可得,且时,,可得,则,可得,则,故选D【点睛】本题考查函数的奇偶性的判断和运用,考查定义法和运算能力,属于基础题3、C【解析】设设,则在单调递增,再利用零点存在定理即可判断函数的零点所在的区间,也即是方程的根所在的区间.【详解】因为为锐角的内角,满足,设,则在单调递增,,在取,得,,因为,所以的零点位于区间,即满足的角,故选:C【点睛】关键点点睛:本题解题的关键点是令,根据零点存在定理判断函数的零点所在的区间.4、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B5、D【解析】利用函数的奇偶性求在上的表达式.【详解】令,则,故,又是定义在上的奇函数,∴.故选:D.6、B【解析】先利用,得;再用换元法结合二次函数求函数最值.【详解】,,当时取最大值,.故选:B【点睛】易错点点睛:注意的限制条件.7、A【解析】由题意可知正方体的外接球为正四面体的内切球时a最小,此时R=,.8、C【解析】先根据对数的运算得到,再用基本不等式求解即可.【详解】由对数式有意义可得,由对数的运算法则得,所以,结合,可得,所以,当且仅当时取等号,所以.故选:.9、D【解析】A利用奇偶性定义判断;B根据函数的单调性,列出分段函数在分段区间的界点上函数值的不等关系求参数范围即可;C利用函数单调性求解集;D将问题转化为与直线的交点个数求参数a的范围.【详解】由题设,当时有,则;当时有,则,故是奇函数,A正确因为在定义域上单调递减,所以,得a≤-4或a≥-1,B正确当a≥-1时,在定义域上单调递减,由,得:x>-1且x≠0,C正确的零点个数即为与直线的交点个数,由题意得,解得-3<a<-5+172,D错误故选:D10、C【解析】根据零点存在性定理进行判断即可【详解】,,,,根据零点存在性定理可得,则的零点所在区间为故选C【点睛】本题考查零点存性定理,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】先求得幂函数的解析式,再去求函数值即可.【详解】设幂函数,则,则,则,则故答案为:312、12【解析】设该班学生中既参加了数学小组,又参加了英语小组的学生有人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有人,则.故答案为:12.13、2【解析】将函数的零点的个数转化为与的图象的交点个数,在同一直角坐标系中画出图象即可得答案.【详解】解:令,这,则函数的零点的个数即为与的图象的交点个数,如图:由图象可知,与的图象的交点个数为2个,即函数的零点的个数为2.故答案为:2.【点睛】本题考查函数零点个数问题,可转化为函数图象交点个数,考查学生的作图能力和转化能力,是基础题.14、,【解析】作出当,时,的图象,将其图象分别向左、向右平移个单位(横坐标不变,纵坐标变为原来的或2倍),得到函数的图象,令,求得的最大值,可得所求范围【详解】解:因为满足,即;又由,可得,画出当,时,的图象,将在,的图象向右平移个单位(横坐标不变,纵坐标变为原来的2倍),再向左平移个单位(横坐标不变,纵坐标变为原来的倍),由此得到函数的图象如图:当,时,,,,又,所以,令,由图像可得,则,解得,所以当时,满足对任意的,,都有,故的范围为,故答案为:,15、【解析】由题分析若对任意,总存在,使得成立,则的最大值小于等于的最大值,进而求解即可【详解】由题,因为,对于函数,则当时,是单调递增的一次函数,则;当时,在上单调递增,在上单调递减,则,所以的最大值为4;对于函数,,因为,所以,所以;所以,即,故,故答案为:【点睛】本题考查函数恒成立问题,考查分段函数的最值,考查正弦型函数的最值,考查转化思想16、三【解析】根据给定的范围确定其象限即可.【详解】由,故在第三象限.故答案为:三.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用函数的奇偶性求出函数的解析式即可(2)与图象交点有3个,画出图象观察,求得实数的取值范围【详解】(1)①由于函数是定义域为的奇函数,则;②当时,,因为是奇函数,所以.所以.综上:.(2)图象如下图所示:单调增区间:单调减区间:.因为方程有三个不同的解,由图象可知,,即18、(1);(2)当年产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.【解析】(1)分、两种情况讨论,结合利润销售收入成本,可得出年利润(万元)关于年产量(千件)的函数解析式;(2)利用二次函数的基本性质、基本不等式可求得函数的最大值及其对应的值,由此可得出结论.【小问1详解】由题意可知,当时,,当时,,故有;【小问2详解】当时,,即时,,当时,有,当且仅当时,,因为,所以时,,答:当产量为80千件时所获利润最大为640万元,此时可捐64万元物资款.19、(1)米.(2)米.【解析】(1)如图,建立平面直角坐标系,以为始边,为终边的角为,计算得到答案.(2)根据对称性,上层桥面距离下层桥面的高度为点在分钟时距离下层桥面的高度,计算得到答案.【详解】(1)如图,建立平面直角坐标系.由题可知在分钟内所转过的角为,因为点在最低点处开始计时,所以以为始边,为终边的角为,所以点的纵坐标为,则(),故在分钟时点距离下层桥面的高度为(米).(2)根据对称性,上层桥面距离下层桥面的高度为点在分钟时距离下层桥面的高度.当时,故上层桥面距离下层桥面的高度约为米.【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.20、(1)详见解析(2)详见解析【解析】(1)按要求写出对应公式即可.(2)利用任意角定义以及对称性即可证明对应公式.【详解】(1)①,,.②,,.(2)①证明:设任意角的终边与单位圆的交点坐标为.由于角的终边与角的终边关于轴对称,因此角的终边与单位圆的交点与点关于轴对称,所以点的坐标是.由任意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年木材回收合同
- 2026年医疗服务绩效考核合同
- 2026年土地规划设计合同
- 2025年大数据分析与处理服务项目可行性研究报告
- 2025年文化遗产保护与修复项目可行性研究报告
- 2025年数字内容制作平台可行性研究报告
- 置换协议补充合同
- 中巴合作协议书
- 2025年快速消费品电商平台开发项目可行性研究报告
- 高考全国卷政治考试题库含答案
- 2025年烟花爆竹经营单位安全管理人员考试试题及答案
- 2025天津大学管理岗位集中招聘15人参考笔试试题及答案解析
- 2025广东广州黄埔区第二次招聘社区专职工作人员50人考试笔试备考题库及答案解析
- 2025年云南省人民检察院聘用制书记员招聘(22人)考试笔试参考题库及答案解析
- 2026届上海市青浦区高三一模数学试卷和答案
- 2026年重庆安全技术职业学院单招职业技能测试题库附答案
- 环卫设施设备采购项目投标方案投标文件(技术方案)
- 旋挖钻机地基承载力验算2017.7
- DB44-T 2197-2019配电房运维服务规范-(高清现行)
- 小学音乐 花城版 五年级上册 鸿雁 课件
- 《现代汉语词汇》PPT课件(完整版)
评论
0/150
提交评论