2026届吉林省吉林油田实验中学高一数学第一学期期末调研试题含解析_第1页
2026届吉林省吉林油田实验中学高一数学第一学期期末调研试题含解析_第2页
2026届吉林省吉林油田实验中学高一数学第一学期期末调研试题含解析_第3页
2026届吉林省吉林油田实验中学高一数学第一学期期末调研试题含解析_第4页
2026届吉林省吉林油田实验中学高一数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届吉林省吉林油田实验中学高一数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,则()A.是偶函数,且在单调递增 B.是偶函数,且在单调递减C.是奇函数,且在单调递增 D.是奇函数,且在单调递减2.已知函数,,若对任意,总存在,使得成立,则实数取值范围为A. B.C. D.3.圆与圆的位置关系是()A.内含 B.内切C.相交 D.外切4.下列各组函数与的图象相同的是()A. B.C. D.5.下列函数在定义域内既是奇函数,又是减函数的是()A. B.C. D.6.已知正三棱锥P—ABC(顶点在底面的射影是底面正三角形的中心)的侧面是顶角为30°腰长为2的等腰三角形,若过A的截面与棱PB,PC分别交于点D和点E,则截面△ADE周长的最小值是()A. B.2C. D.27.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其姓名命名的“高斯函数”为,其中表示不超过的最大整数,例如,已知函数,令函数,则的值域为()A.B.C.D.8.直线的倾斜角为A.30° B.60°C.120° D.150°9.若a>0,且a≠1,x∈R,y∈R,且xy>0,则下列各式不恒成立的是()①logax2=2logax;②logax2=2loga|x|;③loga(xy)=logax+logay;④loga(xy)=loga|x|+loga|y|.A.②④ B.①③C.①④ D.②③10.如图是某班名学生身高的频率分布直方图,那么该班身高在区间内的学生人数为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,则的最小值为____________.12.____.13.函数的最大值与最小值之和等于______14.关于x的不等式在上恒成立,则实数m的取值范围是______15.已知,若,则实数的取值范围为__________16.如图是函数在一个周期内的图象,则其解析式是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某地区每年各个月份的月平均最高气温近似地满足周期性规律,因此第个月的月平均最高气温可近似地用函数来刻画,其中正整数表示月份且,例如表示月份,和是正整数,,.统计发现,该地区每年各个月份的月平均最高气温基本相同,月份的月平均最高气温为摄氏度,是一年中月平均最高气温最低的月份,随后逐月递增直到月份达到最高为摄氏度.(1)求的解析式;(2)某植物在月平均最高气温低于摄氏度的环境中才可生存,求一年中该植物在该地区可生存的月份数.18.已知函数(且)的图像经过点.(1)求函数的解析式;(2)若,求实数的取值范围.19.如图,三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为正三角形,D为AC中点(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A120.已知角的顶点与原点重合,角的始边与轴的非负半轴重合,并满足:,且有意义.(1)试判断角的终边在第几象限;(2)若角的终边上一点,且为坐标原点),求的值及的值.21.已知,(1)当且x是第四象限角时,求的值;(2)若关于x的方程有实数根,求a的最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用函数奇偶性的定义可判断出函数的奇偶性,分析函数解析式的结构可得出函数的单调性.【详解】函数的定义域为,,所以函数为奇函数.而,可知函数为定义域上减函数,因此,函数为奇函数,且是上的减函数.故选:D.2、B【解析】分别求出在的值域,以及在的值域,令在的最大值不小于在的最大值,得到的关系式,解出即可.【详解】对于函数,当时,,由,可得,当时,,由,可得,对任意,,对于函数,,,,对于,使得,对任意,总存在,使得成立,,解得,实数的取值范围为,故选B【点睛】本题主要考查函数的最值、全称量词与存在量词的应用.属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.3、D【解析】根据两圆的圆心距和两半径的和与差的关系判断.【详解】因为圆与圆的圆心距为:两圆的半径之和为:,所以两圆相外切,故选:D4、B【解析】根据相等函数的定义即可得出结果.【详解】若函数与的图象相同则与表示同一个函数,则与的定义域和解析式相同.A:的定义域为R,的定义域为,故排除A;B:,与的定义域、解析式相同,故B正确;C:的定义域为R,的定义域为,故排除C;D:与的解析式不相同,故排除D.故选:B5、D【解析】利用常见函数的奇偶性和单调性逐一判断即可.【详解】对于A,,是偶函数,不满足题意对于B,是奇函数,但不是减函数,不满足题意对于C,,是奇函数,因为是增函数,是减函数,所以是增函数,不满足题意对于D,是奇函数且是减函数,满足题意故选:D6、D【解析】可以将三棱锥侧面展开,将计算周长最小值转化成计算两点间距离最小值,解三角形,即可得出答案.【详解】将三棱锥的侧面展开,如图则将求截面周长的最小值,转化成计算的最短距离,结合题意可知=,,所以,故周长最小值为,故选D.【点睛】本道题目考查了解三角形的知识,可以将空间计算周长最小值转化层平面计算两点间的最小值,即可.7、C【解析】先进行分离,然后结合指数函数与反比例函数性质求出的值域,结合已知定义即可求解【详解】解:因为,所以,所以,则的值域故选:C8、A【解析】直线的斜率为,所以倾斜角为30°.故选A.9、B【解析】对于①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②④根据运算性质可得均正确.【详解】∵xy>0,∴①中,若x<0,则不成立;③中,若x<0,y<0也不成立,②logax2=2loga|x|,④loga(xy)=loga|x|+loga|y|,根据对数运算性质得两个都正确;故选:B.10、C【解析】身高在区间内的频率为人数为,选C.点睛:频率分布直方图中小长方形面积等于对应区间的概率,所有小长方形面积之和为1;频率分布直方图中组中值与对应区间概率乘积的和为平均数;频率分布直方图中小长方形面积之比等于对应概率之比,也等于对应频数之比.二、填空题:本大题共6小题,每小题5分,共30分。11、##2.5【解析】将变形为,利用基本不等式求得答案.【详解】由题意得:,当且仅当时取得等号,故答案为:12、.【解析】本题直接运算即可得到答案.【详解】解:,故答案为:.【点睛】本题考查指数幂的运算、对数的运算,是基础题.13、0【解析】先判断函数为奇函数,则最大值与最小值互为相反数【详解】解:根据题意,设函数的最大值为M,最小值为N,又由,则函数为奇函数,则有,则有;故答案为0【点睛】本题考查函数奇偶性,利用奇函数的性质求解是解题关键14、【解析】对m进行讨论,变形,构造新函数求导,利用单调性求解最值可得实数m的取值范围;【详解】解:由上,;当时,显然也不成立;;可得设,其定义域为R;则,令,可得;当上时,;当上时,;当时;取得最大值为可得,;解得:;故答案为.【点睛】本题考查了导数在判断函数单调性和最值中的应用,属于难题.15、【解析】求出a的范围,利用指数函数的性质转化不等式为对数不等式,求解即可【详解】由loga0得0<a<1.由得a﹣1,∴≤﹣1=,解得0<x≤,故答案为【点睛】本题考查指数函数的单调性的应用,对数不等式的解法,考查计算能力,属于中档题16、【解析】由图可得;,则;由五点作图法可得,解得,所以其解析式为考点:1.三角函数的图像;2.五点作图法;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,为正整数(2)一年中该植物在该地区可生存的月份数是【解析】(1)先利用月平均气温最低、最高的月份求出周期和及值,再利用最低气温和最高气温求出、值,即得到所求函数的解析式;(2)先判定函数的单调性,再代值确定符合要求的月份即可求解.【小问1详解】解:因为月份的月平均最高气温最低,月份的月平均最高气温最高,所以最小正周期.所以.所以,.因为,所以.因为月份的月平均最高气温为摄氏度,月份的月平均最高气温为摄氏度,所以,.所以,.所以的解析式是,,为正整数.【小问2详解】解:因为,,为正整数.所以在区间上单调递增,在区间上单调递减.因为某植物在月平均最高气温低于摄氏度的环境中才可生存,且,,所以该植物在1月份,2月份,3月份可生存.又,所以该植物在11月份,12月份也可生存.即一年中该植物在该地区可生存的月份数是.18、(1);(2)【解析】(1)直接代入数据计算得到答案.(2)确定函数单调递增,根据函数的单调性得到答案.【详解】(1)(且)的图像经过点,即,故,故.(2)函数单调递增,,故,故【点睛】本题考查了函数的解析式,根据函数单调性解不等式,意在考查学生对于函数知识的综合应用.19、(1)见解析;(2)见解析.【解析】(1)连接交于点,连接,可得为中位线,,结合线面平行的判定定理,得平面;(2)由底面,得,正三角形中,中线,结合线面垂直的判定定理,得平面,最后由面面垂直的判定定理,证出平面平面.【详解】(1)连接交于点,连接,则点为的中点为中点,得为中位线,,平面平面,∴直线平面;(2)证明:底面,,∵底面正三角形,是中点,平面,平面,∴平面平面【点睛】本题考查了直三棱柱的性质,线面平行的判定定理、面面垂直的判定定理,,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.20、(1)第四象限;(2),.【解析】(1)根据题意得sinα<0,cosα>0进而求得答案.(2)先求得m的值,进而利用三角函数定义求得答案【详解】(1)由,得,由有意义,可知,所以是第四象限角.(2)因为,所以,解得又为第四象限角,故,从而,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论