版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省示范名校2026届高一上数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.集合A={y|y=x+1,x∈R},B={y|y=2x,x∈R},则A∩B等于()A. B.C. D.,2.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A.30° B.45°C.60° D.90°3.已知函数(且)图像经过定点A,且点A在角的终边上,则()A. B.C.7 D.4.若函数的最大值为,最小值为-,则的值为A. B.2C. D.45.函数的零点为,,则的值为()A.1 B.2C.3 D.46.如图,边长为a的等边三角形ABC的中线AF与中位线DE交于点G,已知△A'DE是△ADE绕DE旋转过程中的一个图形(A'不与A,F重合),则下列命题中正确的是()①动点A'在平面ABC上的射影在线段AF上;②BC∥平面A'DE;③三棱锥A'-FED的体积有最大值.A.① B.①②C.①②③ D.②③7.为了得到函数的图象,只需将函数的图象上所有的点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位8.已知函数,则的值为()A.1 B.2C.4 D.59.若两个非零向量,满足,则与的夹角为()A. B.C. D.10.设函数,若恰有2个零点,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数在上存在零点,则实数a的取值范围是______12.已知,,且,若不等式恒成立,则实数m的取值范围为______13.已知是R上的奇函数,且当时,,则的值为___________.14.用秦九韶算法计算多项式,当时的求值的过程中,的值为________.15.设集合,,则_________16.2021年10月16日0时23分,搭载神舟十三号载人飞船的长征二号F遥十三运载火箭,在酒泉卫星发射中心点火升空.约582秒后,载人飞船与火箭成功分离,进入预定轨道,发射取得圆满成功.此次航天飞行任务中,火箭起到了非常重要的作用.火箭质量是箭体质量与燃料质量的和,在不考虑空气阻力的条件下,燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比.已知某火箭的箭体质量为mkg,当燃料质量为mkg时,该火箭的最大速度为2ln2km/s,当燃料质量为时,该火箭最大速度为2km/s.若该火箭最大速度达到第一宇宙速度7.9km/s,则燃料质量是箭体质量的_______________倍.(参考数据:)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(,且)是指数函数.(1)求k,b的值;(2)求解不等式.18.设向量的夹角为且如果(1)证明:三点共线.(2)试确定实数的值,使的取值满足向量与向量垂直.19.如图,△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,FC=4,AE=5,求此几何体的体积20.已知,函数(1)求的定义域;(2)当时,求不等式的解集21.已知圆,直线,点在直线上,过点作圆的切线,切点分别为.(Ⅰ)若,求点的坐标;(Ⅱ)求证:经过三点圆必过定点,并求出所有定点的坐标.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由得,得,则,故选A.2、C【解析】分别取AC.PC中点O.E.连OE,DE;则OE//PA,所以(或其补角)就是PA与BD所成的角;因PD⊥平面ABCD,所以PD⊥DC,PD⊥AD.设正方形ABCD边长为2,则PA=PC=BD=所以OD=OE=DE=,是正三角形,,故选C3、B【解析】令指数为零,即可求出函数过定点,再根据三角函数的定义求出,最后根据同角三角函数的基本关系将弦化切,再代入计算可得;【详解】解:令解得,所以,故函数(且)过定点,所以由三角函数定义得,所以,故选:B4、D【解析】当时取最大值当时取最小值∴,则故选D5、C【解析】根据零点存在性定理即可求解.【详解】是上的增函数,又,函数的零点所在区间为,又,.故选:C.6、C【解析】【思路点拨】注意折叠前DE⊥AF,折叠后其位置关系没有改变.解:①中由已知可得平面A'FG⊥平面ABC∴点A'在平面ABC上的射影在线段AF上.②BC∥DE,BC⊄平面A'DE,DE⊂平面A'DE,∴BC∥平面A'DE.③当平面A'DE⊥平面ABC时,三棱锥A'-FED的体积达到最大.7、A【解析】化简函数的解析式,根据函数图象变换的知识确定正确选项.【详解】,将函数的图象上所有的点向左平移个单位,得到.故选:A8、D【解析】根据函数的定义域求函数值即可.【详解】因为函数,则,又,所以故选:D.【点睛】本题考查分段函数根据定义域求值域的问题,属于基础题.9、C【解析】根据数量积的运算律得到,即可得解;【详解】解:因为,所以,即,即,所以,即与的夹角为;故选:C10、B【解析】当时,在上单调递增,,当时,令得或(1)若,即时,在上无零点,此时,∴在[1,+∞)上有两个零点,符合题意;(2)若,即时,在(−∞,1)上有1个零点,∴在上只有1个零点,①若,则,∴,解得,②若,则,∴在上无零点,不符合题意;③若,则,∴在上无零点,不符合题意;综上a的取值范围是.选B点睛:解答本题的关键是对实数a进行分类讨论,根据a的不同取值先判断函数在(−∞,1)上的零点个数,在此基础上再判断函数在上的零点个数,看是否满足有两个零点即可二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由可得,求出在上的值域,则实数a的取值范围可求【详解】由,得,即由,得,又∵函数在上存在零点,即实数a的取值范围是故答案为【点睛】本题考查函数零点的判定,考查函数值域的求法,是基础题12、【解析】由基本不等式求得的最小值,解不等式可得的范围【详解】∵,,,,∴,当且仅当,即时等号成立,∴的最小值为8,由解得,故答案为:13、【解析】由已知函数解析式可求,然后结合奇函数定义可求.【详解】因为是R上的奇函数,且当时,,所以,所以故答案为:14、,【解析】利用“秦九韶算法”可知:即可求出.【详解】由“秦九韶算法”可知:,当求当时的值的过程中,,,.故答案为:【点睛】本题考查了“秦九韶算法”的应用,属于基础题.15、【解析】根据集合的交集的概念得到.故答案为16、51【解析】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,根据条件列方程求出k值,再设当该火箭最大速度达到第--宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,根据题中数据再列方程可得a值.【详解】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,则,解得,设当该火箭最大速度达到第一宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,则,得,则燃料质量是箭体质量的51倍故答案为:51.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)答案见解析【解析】(1)根据指数函数的定义列出方程,即可得解;(2)分和两种情况讨论,结合指数函数的单调性即可得解.【小问1详解】解:因为(,且)是指数函数,所以,,所以,;【小问2详解】解:由(1)得(,且),①当时,在R上单调递增,则由,可得,解得;②当时,在R上单调递减,则由,可得,解得,综上可知,当时,原不等式的解集为;当时,原不等式的解集为.18、(1)见解析(2)【解析】(1)利用向量的加法求出,据此,结合,可以得到与的关系;(2)根据题意可得,再结合的夹角为,且,即可得到关于的方程,求解即可.试题解析:(1)即共线,有公共点三点共线.(2)且解得19、96【解析】,取CM=AN=BD,连接DM,MN,DN,用“分割法”把原几何体分割成一个直三棱柱和一个四棱锥.所以V几何体=V三棱柱+V四棱锥试题解析:如图,取CM=AN=BD,连接DM,MN,DN,用“分割法”把原几何体分割成一个直三棱柱和一个四棱锥.所以V几何体=V三棱柱+V四棱锥.由题知三棱柱ABCNDM的体积为V1=×8×6×3=72.四棱锥DMNEF体积为V2=S梯形MNEF·DN=××(1+2)×6×8=24,则几何体的体积为V=V1+V2=72+24=96.点睛:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解20、(1)(2)【解析】(1)根据对数函数的真数大于零得到不等式组,解得即可求出函数的定义域;(2)当时得到、即可得到与,则原不等式即为,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可,需注意函数的定义域;【小问1详解】解:由题意得:,解得,因为,所以,故定义域为【小问2详解】解:因为,所以,所以,,因为,所以,即从而,解得.故不等式的解集为21、(1)点的坐标为或(2)见解析,过的圆必过定点和【解析】(1)设,由题可知,由点点距得到,解得参数值;(2)设的中点为,过三点的圆是以为直径的圆,根据圆的标准方程得到圆,根据点P在直线上得到,代入上式可求出,进而得到定点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 食品加工岗位面试题及生产工艺掌握含答案
- 2026年初级管理会计之专业知识考试题库300道含答案(模拟题)
- 一级2026年注册建筑师之设计前期与场地设计考试题库300道含答案【a卷】
- 2024年江西机电职业技术学院马克思主义基本原理概论期末考试题含答案
- 证券从业者面试题库及答案参考
- 2026年一级造价师考试题库300道及参考答案(精练)
- 2024年集美大学辅导员招聘备考题库附答案
- 2026年注册土木工程师考试题库500道含答案(典型题)
- 一级2026年注册建筑师之设计前期与场地设计考试题库300道含完整答案(网校专用)
- 2025年陕西艺术职业学院单招综合素质考试题库附答案
- 《储能电站技术监督导则》2580
- 保安人员安全知识培训内容
- 垃圾池维修合同范例
- DB31∕T 310001-2020 船舶水污染物内河接收设施配置规范
- 北京市西城区2023-2024学年六年级上学期语文期末试卷(含答案)
- DB11T 850-2011 建筑墙体用腻子应用技术规程
- 城市轨道交通列车自动控制系统维护 课件 3.1 ZC系统认知
- 2024年天津市南开区翔宇学校四上数学期末检测模拟试题含解析
- LNG加气站管道工程施工方案
- 油漆作业风险和隐患辨识、评估分级与控制措施一览表
- NB/T 11440-2023生产煤矿储量估算规范
评论
0/150
提交评论