2026届云南省育能高级中学高二上数学期末学业水平测试试题含解析_第1页
2026届云南省育能高级中学高二上数学期末学业水平测试试题含解析_第2页
2026届云南省育能高级中学高二上数学期末学业水平测试试题含解析_第3页
2026届云南省育能高级中学高二上数学期末学业水平测试试题含解析_第4页
2026届云南省育能高级中学高二上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届云南省育能高级中学高二上数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,,,则数列的公差为()A.1 B.2C.3 D.42.用数学归纳法时,从“k到”左边需增乘的代数式是()A. B.C. D.3.直线在y轴上的截距为()A.-1 B.1C. D.4.已知随机变量X,Y满足,,且,则的值为()A.0.2 B.0.3C.0..5 D.0.65.已知直线与抛物线C:相交于A,B两点,O为坐标原点,,的斜率分别为,,则()A. B.C. D.6.如图所示,直三棱柱中,,,分别是,的中点,,则与所成角的余弦值为()A. B.C. D.7.中国古代《易经》一书中记载,人们通过在绳子上打结来记录数据,即“结绳计数”,如图,一位古人在从右到左(即从低位到高位)依次排列的红绳子上打结,满六进一,用6来记录每年进的钱数,由图可得,这位古人一年收入的钱数用十进制表示为()A.180 B.179C.178 D.1778.已知双曲线的左、右焦点分别为,,过作圆的切线分别交双曲线的左、右两支于,,且,则双曲线的渐近线方程为()A. B.C. D.9.下列命题中正确的是()A.函数最小值为2.B.函数的最小值为2.C.函数的最小值为D.函数的最大值为10.已知F是椭圆C的一个焦点,B是短轴的一个端点,直线BF与椭圆C的另一个交点为D,且,则C的离心率为()A. B.C. D.11.已知正四面体的底面的中心为为的中点,则直线与所成角的余弦值为()A. B.C. D.12.设数列的前项和为,数列是公比为2的等比数列,且,则()A.255 B.257C.127 D.129二、填空题:本题共4小题,每小题5分,共20分。13.下方茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为,乙组数据的平均数为,则的值为__________14.曲线在点处的切线与坐标轴围成的三角形面积为__________.15.已知一个样本数据为3,3,5,5,5,7,7,现在新加入一个3,一个5,一个7得到一个新样本,则与原样本数据相比,新样本数据平均数______,方差______.(“变大”、“变小”、“不变”)16.曲线在点(1,1)处的切线方程为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是矩形,平面于点M连接.(1)求证:平面;(2)求平面与平面所成角的余弦值.18.(12分)已知数列的前n项和为,,且(1)求数列的通项公式;(2)令,记数列的前n项和为,求证:19.(12分)设函数.(1)讨论函数在区间上的单调性;(2)函数,若对任意的,总存在使得,求实数的取值范围.20.(12分)如图,OP为圆锥的高,AB为底面圆O的直径,C为圆O上一点,并且,E为劣弧上的一点,且,.(1)若E为劣弧的中点,求证:平面POE;(2)若E为劣弧的三等分点(靠近点),求平面PEO与平面PEB的夹角的余弦值.21.(12分)已知椭圆C:的离心率为,点和点都在椭圆C上,直线PA交x轴于点M(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N,问:y轴上是否存在点Q(不与O重合),使得?若存在,求点Q的坐标,若不存在,说明理由22.(10分)已知O为坐标原点,点,设动点W到直线的距离为d,且,.(1)记动点W的轨迹为曲线C,求曲线C的方程;(2)若直线l与曲线C交于A,B两点,直线与曲线C交于,两点,直线l与的交点为P(P不在曲线C上),且,设直线l,的斜率分别为k,.求证:为定值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】将已知条件转化为的形式,由此求得.【详解】在等差数列中,设公差为d,由,,得,解得.故选:B2、C【解析】分别求出n=k时左端的表达式,和n=k+1时左端的表达式,比较可得“n从k到k+1”左端需增乘的代数式【详解】当n=k时,左端=(k+1)(k+2)(k+3)…(2k),当n=k+1时,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左边需增乘的代数式是故选:C【点睛】本题考查用数学归纳法证明等式,分别求出n=k时左端的表达式和n=k+1时左端的表达式,是解题的关键3、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为.故选:A4、D【解析】利用正态分布的计算公式:,【详解】且又故选:D5、C【解析】设,,由消得:,又,由韦达定理代入计算即可得答案.【详解】设,,由消得:,所以,故.故选:C【点睛】本题主要考查了直线与抛物线的位置关系,直线的斜率公式,考查了转化与化归的思想,考查了学生的运算求解能力.6、A【解析】取的中点为,的中点为,然后可得或其补角即为与所成角,然后在中求出答案即可.【详解】取的中点为,的中点为,,,所以或其补角即为与所成角,设,则,,在,,故选:A7、D【解析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为、、,然后把它们相加即可.【详解】(个).所以古人一年收入的钱数用十进制表示为个.故选:D.8、D【解析】直线的斜率为,计算,,利用余弦定理得到,化简知,得到答案【详解】由题意知直线的斜率为,,又,由双曲线定义知,,.由余弦定理:,,即,即,解得.故双曲线渐近线的方程为.故答案选D【点睛】本题考查了双曲线的渐近线,与圆的关系,意在考查学生的综合应用能力和计算能力.9、D【解析】根据基本不等式知识对选项逐一判断【详解】对于A,时为负值,故A错误对于B,,而无解,无法取等,故B错误对于,当且仅当即时等号成立,故,D正确,C错误故选:D10、A【解析】设,根据得,代入椭圆方程即可求得离心率.【详解】设椭圆方程,所以,设,所以,所以,在椭圆上,所以,.故选:A11、B【解析】连接,再取中点,连接,得到为直线与所成角,再解三角形即可.【详解】连接,再取中点,连接,因为分别为VC,中点,则,且底面,所以为直线与所成角,令正四面体边长为1,则,,,所以,故选:.12、C【解析】由题设可得,再由即可求值.【详解】由数列是公比为2的等比数列,且,∴,即,∴.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】阅读茎叶图,由甲组数据的中位数为可得,乙组的平均数:,解得:,则:点睛:茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据14、【解析】运用导数的几何意义进行求解即可.【详解】由,所以,而,所以切线方程为:,令,得,令,得,所以三角形的面积为:,故答案为:15、①.不变②.变大【解析】通过计算平均数和方差来确定正确答案.【详解】原样本平均数为,原样本方差为,新样本平均数为,新样本方差为.所以平均数不变,方差变大.故答案为:不变;变大16、【解析】根据导数的几何意义求出切线的斜率,再根据点斜式可求出结果.【详解】因为,所以曲线在点(1,1)处的切线的斜率为,所以所求切线方程为:,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见详解(2)【解析】(1)连接,交于点,则为中点,再由等腰三角形三线合一可知为中点,连接,利用中位线可知,根据直线与平面平行的判定定理即可证明;(2)根据题意建立空间直角坐标系,求出两个平面的法向量,利用向量法即可求出两平面所成角的余弦值.【小问1详解】连接,交于点,则为中点,因为,于,则为中点,连接,则,又因为平面,平面,所以平面;【小问2详解】如图所示,以点为坐标原点,建立空间直角坐标系,则,,设平面的一个法向量为,由可得,令,得,即,易知平面的一个法向量为,设平面与平面所成角为,,则平面与平面所成角的余弦值为.18、(1)(2)证明见解析【解析】(1)依题意可得,即可得到是以为首项,为公比的等比数列,从而求出数列的通项公式;(2)由(1)可得,利用错位相减法求和,即可证明;【小问1详解】解:因为,,所以,所以是以为首项,为公比的等比数列,所以,所以;【小问2详解】解:由(1)可知,所以①,所以②;①②得所以;19、(1)答案见解析;(2).【解析】(1)求导,根据导函数的正负性分类讨论进行求解即可;(2)根据存在性和任意性的定义,结合导数的性质、(1)的结论、构造函数法分类讨论进行求解即可.【小问1详解】,,①当时,恒成立,在上单调递增.②当时,恒成立,在上单调递减,③当吋,,在单调递减,单调递增.综上所述,当吋,在上单调递增;当时,在上单调递减,当时,在单调递减,单调递增.【小问2详解】由题意可知:在单调递减,单调递增由(1)可知:①当时,在单调递增,则恒成立②当时,在单调递减,则应(舍)③当时,,则应有令,则,且在单调递增,单调递减,又恒成立,则无解综上,.【点睛】关键点睛:运用构造函数法,结合存在性、任意性的定义进行求解是解题的关键.20、(1)证明见解析(2)【解析】(1)推导出平面,,,由此能证明平面(2)推导出,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值【小问1详解】证明:为圆锥的高,平面,又平面,,为劣弧的中点,,,平面,平面【小问2详解】解:解:为劣弧的三等分点(靠近点,为底面圆的直径,为圆上一点,并且,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,0,,,0,,,,,,0,,,3,,0,,,,,,,,,3,设平面的法向量,,,则,取,得,,,设平面的法向量,,,则,取,得,1,,设二面角的平面角为,则,二面角的余弦值为21、(1),;(2)存在或,使得,理由见解析.【解析】(1)根据离心率,及求出,,进而得到椭圆方程及用m,n表示点M的坐标;(2)假设存在,根据得到,表达出点坐标,得到,结合得到,从而求出答案.【小问1详解】由离心率可知:,又,,解得:,,故椭圆C:,直线PA为:,令得:,所以;【小问2详解】存在或,使得,理由如下:假设,使

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论