版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省兴化市安丰初级中学2026届高二上数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列求导不正确的是()A B.C. D.2.已知,则下列不等式一定成立的是()A. B.C. D.3.椭圆的左、右焦点分别为、,上存在两点、满足,,则的离心率为()A. B.C. D.4.抛物线的准线方程为,则实数的值为()A. B.C. D.5.在公比为的等比数列中,前项和,则()A.1 B.2C.3 D.46.的二项展开式中,二项式系数最大的项是第()项.A.6 B.5C.4和6 D.5和77.已知直线过抛物线C的焦点,且与C的对称轴垂直,与C交于A,B两点,P为C的准线上一点,若的面积为36,则等于()A.36 B.24C.12 D.68.过点且垂直于直线的直线方程是()A. B.C. D.9.若数列的前项和,则此数列是()A.等差数列 B.等比数列C.等差数列或等比数列 D.以上说法均不对10.如图,在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,则平面的法向量是()A.,1, B.,1,C.,, D.,1,11.已知一质点的运动方程为,其中的单位为米,的单位为秒,则第1秒末的瞬时速度为()A. B.C. D.12.若函数在区间单调递增,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲乙参加摸球游戏,袋子中装有3个黑球和1个白球,球的大小、形状、质量等均一样,若从袋中有放回地取1个球,再取1个球,若取出的两个球同色,则甲胜,若取出的两个球不同色则乙胜,求乙获胜的概率为_____14.如图,在长方体中,,,则直线与平面所成角的正弦值为__________.15.曲线在点M(π,0)处的切线方程为________16.将全体正整数排成一个三角形数阵(如图):按照以上排列的规律,第9行从左向右的第2个数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)证明:是无理数.(我们知道任意一个有理数都可以写成形如(m,n互质,)的形式)18.(12分)若双曲线-=1(a>0,b>0)的焦点坐标分别为和,且该双曲线经过点P(3,1)(1)求双曲线的方程;(2)若F是双曲线的右焦点,Q是双曲线上的一点,过点F,Q的直线l与y轴交于点M,且,求直线l的斜率19.(12分)如图1,在△MBC中,,A,D分别为棱BM,MC的中点,将△MAD沿AD折起到△PAD的位置,使,如图2,连结PB,PC,BD(1)求证:平面PAD⊥平面ABCD;(2)若E为PC中点,求直线DE与平面PBD所成角的正弦值20.(12分)设函数,(1)求的最大值;(2)求证:对于任意x∈(1,7),e1-x+21.(12分)已知抛物线C的焦点为,N为抛物线上一点,且(1)求抛物线C的方程;(2)过点F且斜率为k的直线l与C交于A,B两点,,求直线l的方程22.(10分)已知函数.(1)求的单调区间;(2)讨论的零点个数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由导数的运算法则、复合函数的求导法则计算后可判断【详解】A:;B:;C:;D:故选:C2、B【解析】运用不等式的性质及举反例的方法可求解.详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B3、A【解析】作点关于原点的对称点,连接、、、,推导出、、三点共线,利用椭圆的定义可求得、、、,推导出,利用勾股定理可得出关于、的齐次等式,即可求得该椭圆的离心率.【详解】作点关于原点的对称点,连接、、、,则为、的中点,故四边形为平行四边形,故且,则,所以,,故、、三点共线,由椭圆定义,,有,所以,则,再由椭圆定义,有,因为,所以,在中,即,所以,离心率故选:A.4、B【解析】由题得,解方程即得解.【详解】解:抛物线的准线方程为,所以.故选:B5、C【解析】先利用和的关系求出和,再求其公比.【详解】由,得,,所以,,则.故选:C.6、A【解析】由二项展开的中间项或中间两项二项式系数最大可得解.【详解】因为二项式展开式一共11项,其中中间项的二项式系数最大,易知当r=5时,最大,即二项展开式中,二项式系数最大的为第6项.故选:A7、C【解析】设抛物线方程为,根据题意由求解.【详解】设抛物线方程为:,因为直线过抛物线C的焦点,且与C的对称轴垂直,所以,又P为C的准线上一点,所以点P到直线AB的距离为p,所以,解得,所以,故选:C8、A【解析】根据所求直线垂直于直线,设其方程为,然后将点代入求解.【详解】因为所求直线垂直于直线,所以设其方程为,又因为直线过点,所以,解得所以直线方程为:,故选:A.9、D【解析】利用数列通项与前n项和的关系和等差数列及等比数列的定义判断.【详解】当时,,当时,,当时,,所以是等差数列;当时,为非等差数列,非等比数列’当时,,所以是等比数列,故选:D10、A【解析】设平面的法向量是,,,由可求得法向量.【详解】在单位正方体中,以为原点,,,为坐标向量建立空间直角坐标系,,0,,,1,,,1,,,1,,,0,,设平面的法向量是,,,则,取,得,1,,平面的法向量是,1,.故选:.11、C【解析】求出即得解.【详解】解:由题意得,故质点在第1秒末的瞬时速度为.故选:C12、A【解析】函数在区间上单调递增,转化为导函数在该区间上大于等于0恒成立,进而求出结果.【详解】由题意得:在区间上恒成立,而,所以.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##0.375【解析】先算出有放回地取两次的取法数,再算出取出两球不同色的取法数,根据古典概型的概率公式计算即可求得答案.【详解】有放回地取两球,共有种取法,两次取球不同色的取法有种,故乙获胜的概率为,故答案为:14、##【解析】过作,垂足为,则平面,则即为所求角,从而可得结果.【详解】依题意,画出图形,如图,过作,垂足为,可知点H为中点,由平面,可得,又所以平面,则即为所求角,因为,,所以,故答案为:.15、【解析】由题意可得,据此可得切线的斜率,结合切点坐标即可确定切线方程.【详解】由函数的解析式可得:,所求切线的斜率为:,由于切点坐标为,故切线方程为:.【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.16、38【解析】根据数阵的规律求得正确答案.【详解】数阵第行有个数,第行有个数,并且数字从开始,每次递增.前行共有个数,第行从左向右的最后一个数是,所以第行从左向右的第个数为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、详见解析【解析】利用反证法,即可推得矛盾.【详解】假设有理数,则,则,为整数,的尾数只能是0,1,4,5,6,9,的尾数只能是0,1,4,5,6,9,则的尾数是0,2,8,由得,尾数为0,则的尾数是0,而的尾数为0或5,这与为最简分数,的最大公约数是1,相矛盾,所以假设不正确,是无理数.18、(1)(2)【解析】(1)根据题意列方程组求解(2)待定系数法设直线后,由条件求出坐标后代入双曲线方程求解【小问1详解】,解得,故双曲线方程为【小问2详解】,故设直线方程为则,由得:故,点在双曲线上,则,解得直线l的斜率为19、(1)证明见解析;(2).【解析】(1)推导出,,利用线面垂直的判定定理可得平面,再利用面面垂直的判定定理即可证明;(2)以A为坐标原点,建立如图空间直角坐标系,利用向量法即可求出直线DE与平面所成角的正弦值.【小问1详解】由题意知,因为点A、D分别为MB、MC中点,所以,又,所以,所以.因为,所以,又,所以平面,又平面,所以平面平面;【小问2详解】因为,,,所以两两垂直,以A为坐标原点,建立如图空间直角坐标系,,则,设平面的一个法向量为,则,令,得,所以,设直线DE与平面所成角为,则,所以直线DE与平面所成角的正弦值为.20、(1)(2)证明见解析【解析】(1)求出,讨论其导数后可得原函数的单调性,从而可得函数的最大值.(2)先证明任意的,总有,再利用放缩法和换元法将不等式成立问题转化为任意恒成立,后者可利用导数证明.【小问1详解】,当时,;当时,,故在上为增函数,在上为减函数,故.【小问2详解】因为,故当时,,即,而在为减函数,故在上有,故任意的,总有.要证任意恒成立,即证:任意恒成立,即证:任意恒成立,由(1)可得,任意,有即,故即证:任意恒成立,设,即证:任意恒成立,即证:任意恒成立,即证:任意恒成立,即证:任意恒成立,设,则,而在为增函数,,故存在,使得,且时,,时,,故在为减函数,在为增函数,故任意,总有,故任意恒成立,所以任意恒成立.【点睛】思路点睛:不等式的恒成立,可结合不等式的形式将其转化为若干段上的不等式的恒成立,在每段上可采用不同的方式(导数、放缩法等)进行处理.21、(1)(2)或【解析】(1)抛物线的方程为,利用抛物线的定义求出点N,代入抛物线方程即可求解.(2)设直线的方程为,将直线与抛物线方程联立,利用韦达定理以及焦半径公式可得或,即求.【小问1详解】抛物线的方程为,设,依题意,由抛物线定义,即.所以,又由,得,解得(舍去),所以抛物线的方程为.【小问2详解】由(1)得,设直线的方程为,,,由,得.因为,故所以.由题设知,解得或,因此直线方程为或.22、(1)单调递增区间是和,单调递减区间是(2)时,有1个零点;或时,有2个零点;时,有3个零点.【解析】(1)求解函数的导数,再运用导数求解函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际发展援助中“气候资金”与“传统ODA”的统计重叠问题-基于2024年OECD DAC新核算指南争议
- 2025年黄山太平经济开发区投资有限公司公开招聘高管人员备考笔试试题及答案解析
- 2025重庆梁平区事业单位面向应届生考核招聘68人备考笔试题库及答案解析
- 2025新疆青河县社保中心综柜岗位见习生招聘1人模拟笔试试题及答案解析
- 2025年山西省长治市人民医院公开招聘硕士以上专业技术工作人员模拟笔试试题及答案解析
- 《解决问题的策略》数学课件教案
- 2025广西科学院分析测试中心分子细胞生物学团队招1人参考考试试题及答案解析
- 2025年皖北煤电集团公司掘进工招聘380名考试笔试备考题库及答案解析
- 2026天津市和平区事业单位招聘38人备考笔试试题及答案解析
- 2026年山西省选调生招录(面向西安电子科技大学)参考考试题库及答案解析
- 2025年榆林市住房公积金管理中心招聘(19人)笔试考试备考题库及答案解析
- 2025年常州信息职业技术学院单招职业倾向性测试题库附答案
- 2025年云南省人民检察院聘用制书记员招聘(22人)模拟笔试试题及答案解析
- 2025年党的基础知识题库及答案入党理论知识考试试题
- 2026民航招飞心理测试题及答案
- 2026年超市采购工作计划模版(三篇)
- 时间序列期末试题及答案
- GB/T 38082-2025生物降解塑料购物袋
- 2025年10月自考02275计算机基础与程序设计试题及答案版
- 临床技能规范化培训实施方案
- 设计师提成合同协议书
评论
0/150
提交评论