版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届全国百强校】山西大学附属中学高一数学第一学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的单调递减区间是()A. B.C. D.2.函数的值域为()A. B.C. D.3.某几何体的三视图如图所示,则它的体积是A.B.C.D.4.定义域为R的偶函数满足对任意的,有=且当时,=,若函数=在(0,+上恰有六个零点,则实数的取值范围是A. B.C. D.5.若角的终边和单位圆的交点坐标为,则()A. B.C. D.6.当x越来越大时,下列函数中增长速度最快的是()A. B.C. D.7.设,,,则的大小关系为()A. B.C. D.8.满足的集合的个数为()A. B.C. D.9.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员一天晚上8点喝了一定量的酒后,其血液中的酒精含量上升到,如果在停止喝酒后,他血液中酒精含量会以每小时10%的速度减少,则他次日上午最早几点(结果取整数)开车才不构成酒后驾车?(参考数据:)()A.6 B.7C.8 D.910.已知点,,,则的面积为()A.5 B.6C.7 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.若角的终边与角的终边相同,则在内与角的终边相同的角是______12.已知函数恰有2个零点,则实数m的取值范围是___________.13.直线,当变动时,所有直线都通过定点______.14.已知指数函数的解析式为,则函数的零点为_________15.定义在上的函数则的值为______16.设函数是定义在上的奇函数,且,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.求:(1)AD边所在直线的方程;(2)DC边所在直线的方程18.已知函数是上的奇函数.(1)求的值;(2)比较与0的大小,并说明理由.19.已知,,,且.(1)求的值;(2)求的值.20.已知集合,.(1)求,;(2)已知集合,若,求实数的取值范围.21.已知函数(1)求函数的最小正周期和单调递减区间;(2)求函数,的值域
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】解不等式,即可得出函数的单调递减区间.【详解】解不等式,得,因此,函数的单调递减区间为.故选:D.【点睛】本题考查余弦型函数单调区间的求解,考查计算能力,属于基础题.2、D【解析】根据分段函数的解析式,结合基本初等函数的单调,分别求得两段上函数的值域,进而求得函数的值域.【详解】当时,单调递减,此时函数的值域为;当时,在上单调递增,在上单调递减,此时函数的最大值为,最小值为,此时值域为,综上可得,函数值域为.故选:D.3、A【解析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.4、C【解析】因为=,且是定义域为R的偶函数,令,则,解得,所以有=,所以是周期为2的偶函数,因为当时,=,其图象为开口向下,顶点为(3,0)的抛物线,因为函数=在(0,+上恰有六个零点,令,因为所以,所以,要使函数=在(0,+上恰有六个零点,如图所示:只需要,解得.故选C.点睛:本题考查函数的零点及函数与方程,解答本题时要注意先根据函数给出的性质对称性和周期性,画出函数的图象,然后结合函数的零点个数即为函数和图象交点的个数,利用数形结合思想求得实数的取值范围.5、C【解析】直接利用三角函数的定义可得.【详解】因为角的终边和单位圆的交点坐标为,所以由三角函数定义可得:.故选:C6、B【解析】根据函数的特点即可判断出增长速度.【详解】因为指数函数是几何级数增长,当x越来越大时,增长速度最快.故选:B7、D【解析】利用指数函数和对数函数的单调性即可判断.【详解】,,,,.故选:D.8、B【解析】列举出符合条件的集合,即可得出答案.【详解】满足的集合有:、、.因此,满足的集合的个数为.故选:B.【点睛】本题考查符合条件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.9、B【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.【详解】解:设经过个小时才能驾驶,则,即,由于在定义域上单调递减,,∴他至少经过11小时才能驾驶.则他次日上午最早7点开车才不构成酒后驾车故选:B10、A【解析】设AB边上的高为h,则S△ABC=|AB|·h,根据两点的距离公式求得|AB|,而AB边上的高h就是点C到直线AB的距离,由点到直线的距离公式可求得选项【详解】设AB边上的高为h,则S△ABC=|AB|·h,而|AB|=,AB边上的高h就是点C到直线AB的距离AB边所在的直线方程为,即x+y-4=0.点C到直线x+y-4=0的距离为,因此,S△ABC=×2×=5.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据角的终边与角的终边相同,得到,再得到,然后由列式,根据,可得整数的值,从而可得.【详解】∵(),∴()依题意,得(),解得(),∴,∴在内与角的终边相同的角为故答案为【点睛】本题考查了终边相同的角的表示,属于基础题.12、【解析】讨论上的零点情况,结合题设确定上的零点个数,根据二次函数性质求m的范围.【详解】当时,恒有,此时无零点,则,∴要使上有2个零点,只需即可,故有2个零点有;当时,存在,此时有1个零点,则,∴要使上有1个零点,只需即可,故有2个零点有;综上,要使有2个零点,m的取值范围是.故答案为:.13、(3,1)【解析】将直线方程变形为,得到,解出,即可得到定点坐标.【详解】由,得,对于任意,式子恒成立,则有,解出,故答案为:(3,1).【点睛】本题考查直线过定点问题,直线一定过两直线、的交点.14、1【解析】解方程可得【详解】由得,故答案为:115、【解析】∵定义在上的函数∴故答案为点睛::(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围16、【解析】先由已知条件求出的函数关系式,也就是当时的函数关系式,再求得,然后求的值即可【详解】解:当时,,∴,∵函数是定义在上的奇函数,∴,∴,即由题意得,∴故答案为:【点睛】此题考查了分段函数求值,考查了奇函数的性质,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】分析:(1)先由AD与AB垂直,求得AD的斜率,再由点斜式求得其直线方程;(2)根据矩形特点可以设DC的直线方程为,然后由点到直线的距离得出,就可以求出m的值,即可求出结果.详解:(1)由题意:ABCD为矩形,则AB⊥AD,又AB边所在的直线方程为:x-3y-6=0,所以AD所在直线的斜率kAD=-3,而点T(-1,1)在直线AD上所以AD边所在直线的方程为:3x+y+2=0.(2)方法一:由ABCD为矩形可得,AB∥DC,所以设直线CD的方程为x-3y+m=0.由矩形性质可知点M到AB、CD的距离相等所以=,解得m=2或m=-6(舍)所以DC边所在的直线方程为x-3y+2=0.方法二:方程x-3y-6=0与方程3x+y+2=0联立得A(0,-2),关于M的对称点C(4,2)因AB∥DC,所以DC边所在的直线方程为x-3y+2=0.点睛:本题主要考查直线方程的求法,在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况18、(1);(2)【解析】(1)由奇函数的性质列式求解;(2)先判断函数的单调性,然后求解,利用单调性与奇偶性即可判断出.【小问1详解】因为是上的奇函数,所以,得时,,满足为奇函数,所以.【小问2详解】设,则,因,所以,所以,即,所以函数在上为增函数,又因为为上的奇函数,所以函数在上为增函数,因为,即,所以,因为是上的奇函数,所以,所以【点睛】判断复合函数的单调性时,一般利用换元法,分别判断内函数与外函数的单调性,再由同增异减的性质判断出复合函数的单调性.19、(1).(2)【解析】(1)由已知根据同角三角函数的基本关系可求得,根据代入即可求得求得结果.(2)由(1)利用二倍角公式,可求得,进而可得的值,根据角的范围,即可确定结果.【详解】(1)∵,且∴∴又∵∴(2)∴∴或∵∴又∵∴∵,且∴又∵∴∴【点睛】本题考查同角三角函数的基本关系,二倍角公式,两角和与差的三角函数,考查已知三角函数值求角,属于基础题.20、(1),;(2).【解析】(1)求出集合,再由集合的交、并、补运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025山东铝业有限公司面向中铝股份内部招聘备考考试试题及答案解析
- 2025年亳州涡阳县人力资源和社会保障局公开招募青年就业见习人员备考笔试试题及答案解析
- 2025重庆大学输变电装备技术全国重点实验室劳务派遣项目研究人员招聘(长期有效)参考考试题库及答案解析
- 2025年德州临邑县人民医院公开招聘备案制工作人员(15名)参考考试试题及答案解析
- 2025青海西宁湟源县青少年活动中心教师招聘1人参考考试试题及答案解析
- 网技术维护协议书
- 职工集资合同范本
- 联合生产合同范本
- 联营协议合同模板
- 聘任副经理协议书
- 我的新式汽车(课件)-人美版(北京)(2024)美术二年级上册
- 消化内镜预处理操作规范与方案
- 2025年警考申论真题及答案大全
- 自来水管网知识培训课件
- 汽车购买中介合同范本
- 合格考前一天的课件
- 宿舍心理信息员培训
- 2025北京市实验动物上岗证试题及答案
- 铁路车皮装卸合同范本
- 婚纱照签单合同模板(3篇)
- 安全班队会课件
评论
0/150
提交评论