版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市增城高级中学2026届数学高一上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的定义域为D,若满足;(1)在D内是单调函数;(2)存在,使得在上的值域也是,则称为闭函数;若是闭函数,则实数的取值范围是()A. B.C. D.2.已知角的终边经过点,则()A. B.C. D.3.已知函数是定义在在上的奇函数,且当时,,则函数的零点个数为()个A.2 B.3C.6 D.74.使不等式成立的充分不必要条件是()A. B.C. D.5.已知函数是定义域为的奇函数,且满足,当时,,则A.4 B.2C.-2 D.-46.比较,,的大小()A. B.C. D.7.已知,且,对任意的实数,函数不可能A.是奇函数 B.是偶函数C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数8.已知水平放置的四边形按斜二测画法得到如图所示的直观图,其中,,,,则原四边形的面积为()A. B.C. D.9.已知函数的部分图象如图所示,点,是该图象与轴的交点,过点作直线交该图象于两点,点是的图象的最高点在轴上的射影,则的值是A B.C.1 D.210.将函数图象向左平移个单位,所得函数图象的一个对称中心是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,则a,b,c的大小关系为_________.12.已知幂函数的图象过点,且,则a的取值范围是______13.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积为_____________14.已知两定点,,如果动点满足,则点的轨迹所包围的图形的面积等于__________15.已知函数(,,)的部分图象如图,则函数的单调递增区间为______.16.函数的定义域为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知,求的值;(2)计算:.18.(1)已知,,求的值;(2)若,求的值.19.已知直线与相交于点,直线(1)若点在直线上,求的值;(2)若直线交直线,分别为点和点,且点的坐标为,求的外接圆的标准方程20.已知p:A={x|x2-2x-3≤0,x∈R},q:B={x|x2-2mx+m2-9≤0,x∈R,m∈R}(1)若A∩B={x|1≤x≤3,x∈R},求实数m值;(2)若﹁q是p的必要条件,求实数m的取值范围21.已知圆,直线过点.(1)若直线与圆相切,求直线的方程;(2)若直线与圆交于两点,当的面积最大时,求直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】先判定函数的单调性,然后根据条件建立方程组,转化为使方程有两个相异的非负实根,最后建立关于的不等式,解之即可.【详解】因为函数是单调递增函数,所以即有两个相异非负实根,所以有两个相异非负实根,令,所以有两个相异非负实根,令则,解得.故选.【点睛】本题考查了函数与方程,二次方程实根的分布,转化法,属于中档题.2、C【解析】根据任意角的三角函数的定义,求出,再利用二倍角公式计算可得.【详解】解:因为角的终边经过点,所以,所以故选:C3、D【解析】作出函数,和图象,可知当时,的零点个数为3个;再根据奇函数的对称性,可知当时,也有3个零点,再根据,由此可计算出函数的零点个数.【详解】在同一坐标系中作出函数,和图象,如下图所示:由图象可知,当时,的零点个数为3个;又因为函数和均是定义在在上的奇函数,所以是定义在在上的奇函数,根据奇函数的对称性,可知当时,的零点个数也为3个,又,所以也是零点;综上,函数的零点个数一共有7个.故选:D.4、A【解析】解一元二次不等式,再根据充分条件、必要条件的定义结合集合间的关系直接判断作答.【详解】解不等式得:,对于A,因,即是成立的充分不必要条件,A正确;对于B,是成立的充要条件,B不正确;对于C,因,且,则是成立的不充分不必要条件,C不正确;对于D,因,则是成立必要不充分条件,D不正确.故选:A5、B【解析】先利用周期性将转化为,再利用奇函数的性质将转化成,然后利用时的函数表达式即可求值.【详解】由可知,为周期函数,周期为,所以,又因为为奇函数,有,因为,所以,答案为B.【点睛】主要考查函数的周期性,奇偶性的应用,属于中档题.6、D【解析】由对数函数的单调性判断出,再根据幂函数在上单调递减判断出,即可确定大小关系.【详解】因为,,所以故选:D【点睛】本题考查利用对数函数及幂函数的单调性比较数的大小,属于基础题.7、C【解析】,当时,,为偶函数当时,,为奇函数当且时,既不奇函数又不是偶函数故选8、B【解析】根据直观图画出原图,可得原图形为直角梯形,计算该直角梯形的面积即可.【详解】过点作,垂足为则由已知可得四边形为矩形,为等腰直角三角形,根据直观图画出原图如下:可得原图形为直角梯形,,且,可得原四边形的面积为故选:B.9、B【解析】分析:由图象得到函数的周期,进而求得.又由条件得点D,E关于点B对称,可得,然后根据数量积的定义求解可得结果详解:由图象得,∴,∴又由图象可得点B为函数图象的对称中心,∴点D,E关于点B对称,∴,∴故选B点睛:本题巧妙地将三角函数的图象、性质和向量数量积的运算综合在一起,考查学生分析问题和解决问题的能力.解题的关键是读懂题意,通过图象求得参数;另外,根据函数图象的对称中心将向量进行化简,从而达到能求向量数量积的目的10、D【解析】先由函数平移得解析式,再令,结合选项即可得解.【详解】将函数图象向左平移个单位,可得.令,解得.当时,有对称中心.故选D.【点睛】本题主要考查了函数的图像平移及正弦型三角函数的对称中心的求解,考查了学生的运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据指数函数和对数函数的单调性可得到,,,从而可比较a,b,c的大小关系.【详解】因为,,,所以.故答案为:.12、【解析】先求得幂函数的解析式,根据函数的奇偶性、单调性来求得的取值范围.【详解】设,则,所以,在上递增,且为奇函数,所以.故答案为:13、【解析】正方体的对角线等于球的直径.求得正方体的对角线,则球的表面积为考点:球的表面积点评:若长方体的长、宽和高分别为a、b、c,则球的直径等于长方体的对角线14、4π【解析】设点的坐标为(则,即(以点的轨迹是以为圆心,2为半径的圆,所以点的轨迹所包围的图形的面积等于4π.即答案为4π15、【解析】由函数的图象得到函数的周期,同时根据图象的性质求得一个单调增区间,然后利用周期性即可写出所有的增区间.【详解】由图可知函数f(x)的最小正周期.如图所示,一个周期内的最低点和最高点分别记作,分别作在轴上的射影,记作,根据的对称性可得的横坐标分别为,∴是函数f(x)的一个单调增区间,∴函数的单调增区间是,故答案为:,【点睛】本题关键在于掌握函数图象的对称性和周期性.一般往往先从函数的图象确定函数中的各个参数的值,再利用函数的解析式和正弦函数的性质求得单调区间,但是直接由图象得到函数的周期,并根据函数的图象的性质求得一个单调增区间,进而写出所有的增区间,更为简洁.16、且【解析】由根式函数和分式函数的定义域求解.【详解】由,解得且,所以函数的定义域为且故答案为:且三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2).【解析】(1)把所给的式子进行平方运算,即可求出的值,找到和的关系即可求出的值;(2)化根式为分数指数幂,把对数式的真数用对数的运算性质拆开,再用对数的运算性质求解即可.【详解】(1)由得,由得,故.(2)18、(1);(2).【解析】(1)由条件利用同角三角函数的基本关系求出,即可求得的值;(2)把要求的式子利用诱导公式化为,进而而求得结果.【详解】解:(1)∵,,∴∴(2)若,则.19、(1);(2).【解析】(1)求出两直线的交点P坐标,代入方程可得;(2)把B坐标代入方程可得,由方程联立可解得A点坐标,可设圆的一般方程,代入三点坐标后可解得其中的参数,最后再配方可得标准方程试题解析:(1)又P在直线l3上,,(2)在l3上,,联立l3,l1得:设△PAB的外接圆方程为x2+y2+Dx+Ey+F=0把P(0,1),A(1,0),B(3,2)代入得:△PAB的外接圆方程为x2+y2x+2y=0,即(x)2+(y+1)2=5点睛:第(2)题中求圆的方程,可不设圆方程的一般式,用以下方法求解:由于l1⊥l2,所以PAPB△PAB的外接圆是以AB为直径的圆外接圆方程为:(x)(x)+y(y+1)=0整理后得:(x)2+(y+1)2=520、(1)m=4;(2)m>6或m<-4【解析】(1)分别求得集合A、B,根据交集的结果,列出方程,即可得答案.(2)根据题意可得p是﹁q的充分条件,可得,先求得,根据包含关系,列出不等式,即可得答案.【详解】解:(1)由题意得:A={x|-1≤x≤3,x∈R},B={x|m-3≤x≤m+3,x∈R,m∈R},∵A∩B={x|1≤x≤3,x∈R},∴,解得m=4(2)∵﹁q是p的必要条件,∴p是﹁q的充分条件,∴,又,∴或,解得m>6或m<-421、(1)或;(2)或.【解析】(1)分直线l的斜率不存在与直线l的斜率存在两种讨论,根据直线l与圆M相切进行计算,可得直线的方程;(2)设直线l的方程为,圆心到直线l的距离为d,可得的长,由的面积最大,可得,可得k的值,可得直线的方程.【详解】解:(1)当直线l的斜率不存在时,直线l的方程为,此时直线l与圆M相切,所以符合题意,当直线l的斜率存在时,设l的斜率为k,则直线l
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 未来五年多捻机行业直播电商战略分析研究报告
- 中国光伏储能系统商业化应用场景拓展潜力分析报告
- 道路桥梁养护维修技术措施
- 施工项目科学排班与工序优化方法
- 代管孩子协议书
- 价格鉴定协议书
- 修井供货协议书
- 代招人员协议书
- 信用联社协议书
- 代输液合同范本
- 2025年合肥市蜀山区城市建设投资有限责任公司公开及补充招聘工作人员23人参考笔试题库及答案解析
- 学堂在线 雨课堂 学堂云 自我认知与情绪管理 章节测试答案
- 2025贵州省专业技术人员继续教育公需科目考试题库(2025公需课课程)
- 工时的记录表
- 金属材料与热处理全套ppt课件完整版教程
- 广州市城市规划管理技术标准与准则(用地篇)
- 热拌沥青混合料路面施工机械配置计算(含表格)
- 水利施工CB常用表格
- 心肺复苏后昏迷患者预后评估
- DN800主给水管道下穿铁路施工方案
- 《鸿门宴》话剧剧本
评论
0/150
提交评论