云南省广南县第三中学校2026届高一上数学期末综合测试模拟试题含解析_第1页
云南省广南县第三中学校2026届高一上数学期末综合测试模拟试题含解析_第2页
云南省广南县第三中学校2026届高一上数学期末综合测试模拟试题含解析_第3页
云南省广南县第三中学校2026届高一上数学期末综合测试模拟试题含解析_第4页
云南省广南县第三中学校2026届高一上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省广南县第三中学校2026届高一上数学期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若两直线与平行,则它们之间的距离为A. B.C. D.2.已知,则A.-2 B.-1C. D.23.如图所示的时钟显示的时刻为3:30,此时时针与分针的夹角为.若一个扇形的圆心角为a,弧长为10,则该扇形的面积为()A. B.C. D.4.已知,,,则下列判断正确的是()A. B.C. D.5.已知向量,且,则A. B.C. D.6.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:

12345678…1415…272829248163264128256…1638432768…134217728268435356536870912这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现.比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=A.134217728 B.268435356C.536870912 D.5137658027.将函数的图象向左平移个单位长度得到函数的图象,下列说法正确的是()A.是奇函数 B.的周期是C.的图象关于直线对称 D.的图象关于点对称8.已知幂函数的图象过(4,2)点,则A. B.C. D.9.已知函数,则下列是函数图象的对称中心的坐标的是()A. B.C. D.10.设,其中、是正实数,且,,则与的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则实数的值为______.12.已知集合,,则集合中元素的个数为__________13.已知定义在上的偶函数,当时,若直线与函数的图象恰有八个交点,其横坐标分别为,,,,,,,,则的取值范围是___________.14.已知向量,,若,,,则的值为__________15.已知角的终边过点,求_________________.16.设函数是定义在上的奇函数,且,则___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,且若,求的值;与能否平行,请说明理由18.在平面直角坐标系中,角()和角()的顶点均与坐标原点重合,始边均为轴的非负半轴,终边分别与单位圆交于两点,两点的纵坐标分别为,.(1)求,的值;(2)求的值.19.为了考查甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:甲12131415101613111511乙111617141319681016哪种小麦长得比较整齐?20.已知函数(1)当时,解方程;(2)当时,恒成立,求的取值范围21.设集合,.(1)若,求;(2)若,求m的取值范围;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据两直线平行求得值,利用平行线间距离公式求解即可【详解】与平行,,即直线为,即故选D【点睛】本题考查求平行线间距离.当直线与直线平行时,;平行线间距离公式为,因此两平行直线需满足,2、B【解析】,,则,故选B.3、D【解析】先求出,再由弧长公式求出扇形半径,代入扇形面积公式计算即可.【详解】由图可知,,则该扇形的半径,故面积.故选:D4、C【解析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.5、B【解析】由已知得,因为,所以,即,解得.选B6、C【解析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可.【详解】由已知可知,要计算16384×32768,先查第一行的对应数字:16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912,所以有:16384×32768=536870912,故选C.【点睛】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.7、D【解析】利用三角函数图象变换可得函数的解析式,然后利用余弦型函数的基本性质逐项判断可得出正确选项.【详解】由题意可得,对于A,函数是偶函数,A错误:对于B,函数最小周期是,B错误;对于C,由,则直线不是函数图象的对称轴,C错误;对于D,由,则是函数图象的一个对称中心,D正确.故选:D.8、A【解析】详解】由题意可设,又函数图象过定点(4,2),,,从而可知,则.故选A9、A【解析】根据三角函数性质计算对称中心【详解】令,则,故图象的对称中心为故选:A10、B【解析】利用基本不等式结合二次函数的基本性质可得出与的大小关系.【详解】因为、是正实数,且,则,,因此,.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由指数式与对数式的互化公式求解即可【详解】因为,所以,故答案为:12、2【解析】依题意,故,即元素个数为个.13、【解析】先作出函数的大致图象,由函数性质及图象可知八个根是两两关于轴对称的,因此分析可得,,进而将转化为形式,再数形结合,求得结果.【详解】作出函数的图象如图:直线与函数的图象恰有八个交点,其横坐标分别为,,,,,,,,不妨设从左到右分别是,,,,,,,,则,由函数解析式以及图象可知:,即,同理:;由图象为偶函数,图象关于轴对称可知:,所以又因为是方程的两根,所以,而,所以,故,即,故答案为:14、C【解析】分析:由,,,可得向量与平行,且,从而可得结果.详解:∵,,,∴向量与平行,且,∴.故答案为.点睛:本题主要考查共线向量的坐标运算,平面向量的数量积公式,意在考查对基本概念的理解与应用,属于中档题15、【解析】先求出,再利用三角函数定义,即可得出结果.【详解】依题意可得:,故答案为:【点睛】本题考查了利用终边上点来求三角函数值,考查了理解辨析能力和运算能力,属于基础题目.16、【解析】先由已知条件求出的函数关系式,也就是当时的函数关系式,再求得,然后求的值即可【详解】解:当时,,∴,∵函数是定义在上的奇函数,∴,∴,即由题意得,∴故答案为:【点睛】此题考查了分段函数求值,考查了奇函数的性质,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)不能平行.【解析】推导出,从而,,进而,由此能求出假设与平行,则推导出,,由,得,不能成立,从而假设不成立,故与不能平行【详解】,,且.,,,,,.假设与平行,则,则,,,,不能成立,故假设不成立,故与不能平行【点睛】本题考查向量的模的求法,考查向量能否平行的判断,考查向量垂直、向量平行的性质等基础知识,考查运算求解能力,是基础题.18、(1),(2)【解析】(1)先利用任意角的三角函数的定义求出,再利用同角三角函数的关系可求得答案,(2)先利用诱导公式化简,再代值计算即可【小问1详解】因为在平面直角坐标系中,角,的顶点均与坐标原点重合,终边分别与单位圆交于两点,且两点的纵坐标分别为,,又因为,,根据三角函数的定义得:,,所以,,所以,.【小问2详解】19、乙种小麦长得比较整齐.【解析】根据题意,要比较甲、乙两种小麦的长势更整齐,需比较它们的方差,先求出其平均数,再根据方差的计算方法计算方差,进行比较可得结论试题解析:由题中条件可得:,,,,∵,∴乙种小麦长得比较整齐.点睛:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小,方差或标准差越小,则数据分布波动较小,相对比较稳定20、(1)(2)【解析】(1)当时,,求出,把原方程转化为指数方程,再利用换元法求解,即可求出结果;(2)⇔|a+1|≥2x−12x,令,,则对任意恒成立,利用函数的单调性求出的最大值,再求解绝对值不等式可得实数的取值范围【小问1详解】解:当时,,原方程等价于且,,即,且,,所以,且令,则原方程化为,整理得,解得或,即或(舍去),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论