2026届甘肃省天水一中高二数学第一学期期末综合测试模拟试题含解析_第1页
2026届甘肃省天水一中高二数学第一学期期末综合测试模拟试题含解析_第2页
2026届甘肃省天水一中高二数学第一学期期末综合测试模拟试题含解析_第3页
2026届甘肃省天水一中高二数学第一学期期末综合测试模拟试题含解析_第4页
2026届甘肃省天水一中高二数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届甘肃省天水一中高二数学第一学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,直线与直线平行,则()A. B.C. D.2.已知数列满足,则()A. B.1C.2 D.43.已知,是椭圆C的两个焦点,P是C上的一点,若以为直径的圆过点P,且,则C的离心率为()A. B.C. D.4.已知等差数列满足,,则()A. B.C. D.5.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为16.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.7.沙糖桔网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的最大值为90万元,最小值为30万元 B.这一年的总利润超过400万元C.这12个月利润的中位数与众数均为30 D.7月份的利润最大8.已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上 B.在轴上C.当时在轴上 D.当时在轴上9.设变量满足约束条件,则的最大值为()A.0 B.C.3 D.410.已知直线,,点是抛物线上一点,则点到直线和的距离之和的最小值为()A.2 B.C.3 D.11.以轴为对称轴,抛物线通径的长为8,顶点在坐标原点的抛物线的方程是()A. B.C.或 D.或12.下列函数中,以为最小正周期,且在上单调递减的为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是首项为,公差为1的等差数列,数列满足,若对任意的,都有成立,则实数的取值范围是________14.若直线与函数的图象有三个交点,则实数a的取值范围是_________15.函数的图象在点处的切线方程为___________.16.在正方体中,则直线与平面所成角的正弦值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知正项等比数列的前项和为,满足,.记.(1)求数列的通项公式;(2)设数列前项和,求使得不等式成立的的最小值.18.(12分)已知焦点为F的抛物线上一点到F的距离是4(1)求抛物线C的方程(2)若不过原点O的直线l与抛物线C交于A,B两点(A,B位于x轴两侧),C的准线与x轴交于点E,直线与分别交于点M,N,若,证明:直线l过定点19.(12分)2022北京冬奥会即将开始,北京某大学鼓励学生积极参与志愿者的选拔.某学院有6名学生通过了志愿者选拔,其中4名男生,2名女生(1)若从中挑选2名志愿者,求入选者正好是一名男生和一名女生的概率;(2)若从6名志愿者中任选3人负责滑雪项目服务岗位,那么现将6人分为A、B两组进行滑雪项目相关知识及志愿者服务知识竞赛,共赛10局.A、B两组分数(单位:分)如下:A:125,141,140,137,122,114,119,139,121,142B:126,115,143,126,143,115,139,139,115,139从统计学角度看,应选择哪个组更合适?理由是什么?20.(12分)已知函数f(x)=x-mlnx-m.(1)讨论函数f(x)的单调性;(2)若函数f(x)有最小值g(m),证明:g(m)在上恒成立.21.(12分)已知数列满足(1)证明:数列为等差数列,并求数列的通项公式;(2)设,求数列的前n项和22.(10分)已知椭圆:的一个焦点与曲线的焦点重合,且离心率为.(1)求椭圆的方程(2)设直线:交椭圆于M,N两点.①若且的面积为,求的值.②若轴上的任意一点到直线与直线(为椭圆的右焦点)的距离相等,求证:直线恒过定点,并求出该定点坐标

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据直线平行求解即可.【详解】因为直线与直线平行,所以,即,经检验,满足题意.故选:C2、B【解析】根据递推式以及迭代即可.【详解】由,得,,,,,,.故选:B3、B【解析】根据题意,在中,设,则,进而根据椭圆定义得,进而可得离心率.【详解】在中,设,则,又由椭圆定义可知则离心率,故选:B.【点睛】本题考查椭圆离心率的计算,考查运算求解能力,是基础题.本题解题的关键在于根据已知条件,结合椭圆的定义,在焦点三角形中根据边角关系求解.4、D【解析】根据等差数列的通项公式求出公差,再结合即可得的值.【详解】因为是等差数列,设公差为,所以,即,所以,所以,故选:D.5、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D6、C【解析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.7、B【解析】根据图形和中位数、众数的概念依次判断选项即可.【详解】A:由图可知,月收入的最大值为90,最小值为30,故A正确;B:各个月的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,所以总利润为20+30+20+10+30+30+60+40+30+30+50+30=380(万元),故B错误;C:这12个月利润的中位数与众数均为30,故C正确;D:7月份的利润最大,为60万元,故D正确.故选:B8、B【解析】设出双曲线的一般方程,利用题设不等式,令二者平方,整理求得的,进而可判断出焦点的位置【详解】渐近线方程为,,平方,两边除,,,双曲线的焦点在轴上.故选B.【点睛】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力9、A【解析】先画出约束条件所表示的平面区域,然后根据目标函数的几何意义,即可求出目标函数的最大值.【详解】解:满足约束条件的可行域如下图所示:由,可得,因为目标函数,即,表示斜率为,截距为的直线,由图可知,当直线经过时截距取得最小值,即取得最大值,所以的最大值为,故选:A.10、C【解析】由抛物线的定义可知点到直线和的距离之和的最小值即为焦点到直线的距离.【详解】解:由题意,抛物线的焦点为,准线为,所以根据抛物线的定义可得点到直线的距离等于,所以点到直线和的距离之和的最小值即为焦点到直线的距离,故选:C.11、C【解析】由分焦点在轴的正半轴上和焦点在轴的负半轴上,两种情况讨论设出方程,根据,即可求解.【详解】由题意,抛物线的顶点在原点,以轴为对称轴,且通经长为8,当抛物线的焦点在轴的正半轴上时,设抛物线的方程为,可得,解得,所以抛物线方程为;当抛物线的焦点在轴的负半轴上时,设抛物线的方程为,可得,解得,所以抛物线方程为,所以所求抛物线的方程为.故选:C.12、B【解析】A.利用正切函数的性质判断;B.作出的图象判断;C.作出的图象判断;D.作出的图象判断.【详解】A.是以为最小正周期,在上单调递增,故错误;B.如图所示:,由图象知:函数是以为最小正周期,在上单调递减,故正确;C.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;D.如图所示:,由图象知:是以为最小正周期,在上单调递增,故错误;故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求得,再得出,对于任意的,都有成立,说明是中的最小项【详解】由题意,∴,易知函数在和上都是减函数,且时,,即,时,,,由题意对于任意的,都有成立,则是最小项,∴,解得,故答案为:14、【解析】求导函数,分析导函数的符号,得出原函数的单调性和极值,由此可求得答案.【详解】解:因为函数,则,所以当或时,,函数单调递减;当时,,函数单调递增,所以当时,函数取得极小值,当时,函数取得极大值,因为直线与函数的图象有三个交点,所以实数a的取值范围是,故答案为:.15、【解析】求导得到,计算,根据点斜式可得到切线方程.【详解】因此,则,故,又点在函数的图象上,故切线方程为:,即.故答案为:16、【解析】建立空间直角坐标系,利用空间向量夹角公式进行求解即可【详解】建立如图所示的空间直角坐标系,设该正方体的棱长为1,所以,,,,因此,,,设平面的法向量为:,所以有:,令,所以,因此,设与的夹角为,直线与平面所成角为,所以有,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2)5.【解析】(1)根据数列的递推公式探求出其项间关系,由此求出的公比,进而求得,的通项公式.(2)利用(1)的结论结合错位相减法求出,再将不等式变形,经推理计算得解.【小问1详解】解:设正项等比数列的公比为,当时,,即,则有,即,而,解得,又,则,所以,所以数列,的通项公式分别为:,.【小问2详解】解:由(1)知,,则,则,两式相减得:于是得,由得:,即,令,,显然,,,,,,由,解得,即数列在时是递增的,于是得当时,即,,则,所以不等式成立的n的最小值是5.18、(1);(2)证明过程见解析.【解析】(1)利用抛物线的定义进行求解即可;(2)设出直线l的方程,与抛物线方程联立,根据一元二次方程的根与系数关系进行求解证明即可.【小问1详解】该抛物线的准线方程为,因为点到F的距离是4,所以有,所以抛物线C的方程为:;【小问2详解】该抛物线的准线方程为,设直线l的方程为:,与抛物线方程联立,得,不妨设,因此,直线的斜率为:,所以方程为:,当时,,即,同理,因为,所以有,而,所以有,所以直线l的方程为:,因此直线l恒过.【点睛】关键点睛:把直线l的方程为:,利用一元二次方程根与系数关系是解题的关键.19、(1)(2)答案见详解【解析】(1):把4名男生和2名女生编号后用列举法写出任选2名的所有基本事件,同时可得出,两人是一男一女的基本事件,计数后可计算概率;(2):求出两组数据的均值和方差,比较可得【小问1详解】设4名男生分别用A,B,C,D表示:2名女生分别用1,2表示.基本事件为:,,,,,,,,,,,,共15种,所以所求概率为;【小问2详解】A组数据的平均数,B组数据的平均数,A组数据的方差,B组数据的方差,所以选择A队.理由:A、B两队平均数相同,且,A组成绩波动小20、(1)答案见解析(2)证明见解析【解析】(1)求出函数的导数,讨论其符号后可得函数的单调区间.(2)根据(1)的结论可得函数的最小值,再利用导数可证不等式.【小问1详解】函数的定义域为,且,当时,在上恒成立,所以此时在上为增函数,当时,由,解得,由,解得,所以在上为减函数,在上为增函数,综上:当时,在上为增函数,当时,在上为减函数,在上为增函数;【小问2详解】由(1)知:当时,在上为增函数,无最小值.当时,在上上为减函数,在上为增函数,所以,即,则,由,解得,由,解得,所以在上为增函数,在上为减函数,所以,即在上恒成立.21、(1)证明见解析,;(2).【解析】(1)由得是公差为2的等差数列,再由可得答案.(2),分为奇数、偶数,分组求和即可求解.【小问1详解】由,得,故是公差为2的等差数列,故,由,故,于是.【小问2详解】依题意,,当为偶数时,故,当为奇数时,,综上,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论