版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市松江区统考2026届高二数学第一学期期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是等差数列的前n项和,若,,则()A.26 B.-7C.-10 D.-132.已知三个观测点,在的正北方向,相距,在的正东方向,相距.在某次爆炸点定位测试中,两个观测点同时听到爆炸声,观测点晚听到,已知声速为,则爆炸点与观测点的距离是()A. B.C. D.3.已知抛物线上的点到其准线的距离为,则()A. B.C. D.4.已知p、q是两个命题,若“(¬p)∨q”是假命题,则()A.p、q都是假命题 B.p、q都是真命题C.p是假命题q是真命题 D.p是真命题q是假命题5.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤”意思是:“现有一根金杖,长5尺,头部1尺,重4斤;尾部1尺,重2斤;若该金杖从头到尾每一尺重量构成等差数列,其中重量为,则的值为()A.4 B.12C.15 D.186.设等差数列,的前n项和分别是,,若,则()A. B.C. D.7.设函数在上可导,则等于()A. B.C. D.以上都不对8.命题:“,”的否定形式为()A., B.,C., D.,9.已知等差数列为其前项和,且,且,则()A.36 B.117C. D.1310.关于的不等式的解集为,则关于的不等式的解集为A. B.C. D.11.如图,过抛物线的焦点的直线依次交抛物线及准线于点,若且,则抛物线的方程为()A.B.C.D.12.长方体中,,,,为侧面内(含边界)的动点,且满足,则四棱锥体积的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.据相关数据统计,部分省市的政府工作报告将“推进5G通信网络建设”列入2020年的重点工作,2020年一月份全国共建基站3万个如果从2月份起,以后的每个月比上一个月多建设0.2万个,那么2020年这一年全国共有基站________万个14.设是定义在上的可导函数,且满足,则不等式解集为_______15.如图是一个边长为2的正方体的平面展开图,在这个正方体中,则下列说法中正确的序号是___________.①直线与直线垂直;②直线与直线相交;③直线与直线平行;④直线与直线异面;16.已知是双曲线的左、右焦点,若为双曲线上一点,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足;正项等比数列满足,,(1)求数列,的通项公式;(2)数列满足,的前n项和为,求的最大值.18.(12分)已知数列的前n项和为,,,其中.(1)记,求证:是等比数列;(2)设,数列的前n项和为,求证:.19.(12分)在如图所示的几何体中,四边形ABCD为正方形,平面ABCD,,,.(1)求证:平面PAD;(2)求直线AB与平面PCE所成角的正弦值;20.(12分)如图,在三棱锥中,,,记二面角的平面角为(1)若,,求三棱锥的体积;(2)若M为BC的中点,求直线AD与EM所成角的取值范围21.(12分)已知函数.(1)当时,讨论的单调性;(2)当时,,求a的取值范围.22.(10分)已知命题实数满足不等式,命题实数满足不等式.(1)当时,命题,均为真命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】直接利用等差数列通项和求和公式计算得到答案.【详解】,,解得,故.故选:C.2、D【解析】根据题意作出示意图,然后结合余弦定理解三角形即可求出结果.【详解】设爆炸点为,由于两个观测点同时听到爆炸声,则点位于的垂直平分线上,又在的正东方向且观测点晚听到,则点位于的左侧,,,,设,则,解得,则爆炸点与观测点的距离为,故选:D.3、C【解析】首先根据抛物线的标准方程的形式,确定的值,再根据焦半径公式求解.【详解】,,因为点到的准线的距离为,所以,得故选:C4、D【解析】由已知可得¬p,q都是假命题,从而可分析判断各选项【详解】∵“(¬p)∨q”是假命题,∴¬p,q都是假命题,∴p真,q假,故选:D.5、C【解析】先求出公差,再利用公式可求总重量.【详解】设头部一尺重量为,其后每尺重量依次为,由题设有,,故公差为.故中间一尺的重量为所以这5项和为.故选:C.6、B【解析】利用求解.【详解】解:因为等差数列,的前n项和分别是,所以.故选:B7、C【解析】根据目标式,结合导数的定义即可得结果.【详解】.故选:C8、D【解析】根据含一个量词的命题的否定方法直接得到结果.【详解】因为全称命题的否定是特称命题,所以命题:“,”的否定形式为:,,故选:D.【点睛】本题考查全称命题的否定,难度容易.含一个量词的命题的否定方法:修改量词,否定结论.9、B【解析】根据等差数列下标的性质,,进而根据条件求出,然后结合等差数列的求和公式和下标性质求得答案.【详解】由题意,,即为递增数列,所以,又,又,联立方程组解得:.于是,.故选:B.10、B【解析】设,解集为所以二次函数图像开口向下,且与交点为,由韦达定理得所以的解集为,故选B.11、D【解析】如图根据抛物线定义可知,进而推断出的值,在直角三角形中求得,进而根据,利用比例线段的性质可求得,则抛物线方程可得.【详解】如图分别过点,作准线的垂线,分别交准线于点,设,则由已知得:,由定义得:,故在直角三角形中,,,,从而得,,求得,所以抛物线的方程为故选:D12、D【解析】取的中点,以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,分析可知点的轨迹是以点、为焦点的椭圆,求出椭圆的方程,可知当点为椭圆与棱或的交点时,点到平面的距离取最小值,由此可求得四棱锥体积的最小值.【详解】取的中点,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,设点,其中,,则、,因为平面,平面,则,所以,,同理可得,所以,,所以点的轨迹是以点、为焦点,且长轴长为的椭圆的一部分,则,,,所以,点的轨迹方程为,点到平面的距离为,当点为曲线与棱或棱的交点时,点到平面的距离取最小值,将代入方程得,因此,四棱锥体积的最小值为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、2##【解析】由题意可知一月份到十二月份基站个数是以3为首项,0.2为公差的等差数列,根据等差数列求和公式可得答案.【详解】一月份全国共建基站3万个,2月全国共建基站万个,3月全国共建基站万个,,12月全国共建基站万个,基站个数是以3为首项,0.2为公差的等差数列,2020年这一年全国共有基站万个.故答案为:49.2.14、【解析】构造函数,结合题意求得,由此判断出在上递增,由此求解出不等式的解集.【详解】令,,故函数在上单调递增,不等式可化为,则,解得:【点睛】本小题主要考查构造函数法解不等式,考查化归与转化的数学思想方法,属于基础题.15、①④【解析】画出正方体,,,故,①正确,根据相交推出矛盾得到②错误,根据,与相交得到③错误,排除共面的情况得到④正确,得到答案.【详解】如图所示的正方体中,,,故,①正确;若直线与直线相交,则四点共面,即在平面内,不成立,②错误;,与相交,故直线与直线不平行,③错误;,与不平行,故与不平行,若与相交,则四点共面,在平面内,不成立,故直线与直线异面,④正确;故答案为:①④.16、17【解析】根据双曲线的定义求解【详解】由双曲线方程知,,,又.,所以(1舍去)故答案为:17三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)8【解析】(1)利用已知的关系把替换成,再把两式作差后整理即得通项公式,的通项公式可由已知条件建立基本量的方程求解.(2)由的通项公式可判断,,,当时,所有正项的和即为的最大项的值.小问1详解】,,两式相减得所以,又也满足,故;设等比数列的公比为,由得,即,因为,即,,(负值舍去),所以【小问2详解】由题意,,则,,,且当时,所以的最大值是.18、(1)证明见解析;(2)证明见解析.【解析】(1)应用的关系,结合构造法可得,根据已知条件及等比数列的定义即可证结论.(2)由(1)得,再应用错位相减法求,即可证结论.【小问1详解】证明:对任意的,,,时,,解得,时,因为,,两式相减可得:,即有,∴,又,则,因为,,所以,对任意的,,所以,因此,是首项和公比均为3的等比数列【小问2详解】由(1)得:,则,,,两式相减得:,化简可得:,又,∴.19、(1)证明见详解(2)【解析】(1)将线面平行转化为面面平行,由已知易证;(2)延长相交与点F,利用等体积法求点A到平面PCE,然后由可得.【小问1详解】四边形ABCD为正方形平面PAD,平面PAD平面PAD同理,,平面PAD又平面,平面平面平面PAD平面平面PAD【小问2详解】延长相交与点F,因为,所以分别为的中点.记点到平面PCF为d,直线AB与平面PCE所成角为,则.易知,,,,因为平面ABCD,所以,所以因为,所以由得:即,得所以22.20、(1)(2)【解析】(1)作出辅助线,找到二面角的平面角,利用余弦定理求出,求出底面积和高,进而求出三棱锥的体积;(2)利用空间基底表达出,结合第一问结论求出,从而求出答案.【小问1详解】取AC的中点F,连接FD,FE,由BC=2,则,故DF⊥AC,EF⊥AC,故∠DFE即为二面角的平面角,即,连接DE,作DH⊥FE,因为,所以平面DEF,因为DH平面DEF,所以AC⊥DH,因为,所以DH⊥平面ABC,因为,由勾股定理得:,,又,由勾股定理逆定理可知,AE⊥CE,且∠BAC=,,在△ABC中,由余弦定理得:,解得:或(舍去),则,因为,,所以△DEF为等边三角形,则,故三棱锥的体积;【小问2详解】设,则,,由(1)知:,,取为空间中的一组基底,则,由第一问可知:,则其中,且,,故,由第一问可知,又是的中点,所以,所以,因为三棱锥中,所以,所以,故直线AD与EM所成角范围为.【点睛】针对于立体几何中角度范围的题目,可以建立空间直角坐标系来进行求解,若不容易建立坐标系时,也可以通过基底表达出各个向量,进而求出答案.21、(1)在上单调递减,在上单调递增(2)【解析】(1)研究当时的导数的符号即可讨论得到的单调性;(2)对原函数求导,对a的范围分类讨论即可得出答案.【小问1详解】当时,,令,则,所以在上单调递增.又因为,所以当时,,当时,,所以在上单调递减,在上单调递增.【小问2详解】,且.①当时,由(1)可知当时,所以在上单调递增,则,符合题意.②当时,,不符合题意,舍去.③当时,令,则,则,,当时,,所以在上单调递减,当时,,不符合题意,舍去.综上,a的取值范围为.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用22、(1);(2).【解析】(1)分别求出命题,均
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年郑州电力职业技术学院单招职业倾向性测试题库参考答案详解
- 2026年三亚航空旅游职业学院单招职业适应性测试题库及参考答案详解1套
- 2026年山西老区职业技术学院单招综合素质考试题库附答案详解
- 2026年内蒙古北方职业技术学院单招职业技能测试题库及参考答案详解一套
- 教师政治面试题及答案
- 中药学公招面试题及答案
- 2025年临沧市嘉育中学诚招各学科教师52人备考题库及答案详解1套
- 2025年个旧市医共体卡房分院招聘备考题库及完整答案详解1套
- 中国中医科学院眼科医院2026年公开招聘国内高校应届毕业生备考题库(提前批)及1套参考答案详解
- 2025年甘肃省建筑科学研究院(集团)有限公司工程造价管理岗招聘备考题库及参考答案详解一套
- 学堂在线 雨课堂 学堂云 自我认知与情绪管理 章节测试答案
- 2025贵州省专业技术人员继续教育公需科目考试题库(2025公需课课程)
- 非洲猪瘟实验室诊断电子教案课件
- 工时的记录表
- 金属材料与热处理全套ppt课件完整版教程
- 广州市城市规划管理技术标准与准则(用地篇)
- 热拌沥青混合料路面施工机械配置计算(含表格)
- 水利施工CB常用表格
- 心肺复苏后昏迷患者预后评估
- DN800主给水管道下穿铁路施工方案
- 《鸿门宴》话剧剧本
评论
0/150
提交评论