版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届辽宁省丹东市通远堡高中数学高一上期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合P=,,则PQ=()A. B.C. D.2.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-23.命题:的否定为()A. B.C. D.4.已知函数,若,且当时,则的取值范围是A. B.C. D.5.已知,则=()A. B.C. D.6.函数的定义域是()A. B.C D.7.已知函数是定义域为奇函数,当时,,则不等式的解集为A. B.C. D.8.《九章算术》成书于公元一世纪,是中国古代乃至东方的第一部自成体系的数学专著.书中记载这样一个问题“今有宛田,下周三十步,径十六步.问为田几何?”(一步=1.5米)意思是现有扇形田,弧长为45米,直径为24米,那么扇形田的面积为A.135平方米 B.270平方米C.540平方米 D.1080平方米9.已知是偶函数,它在上是减函数.若,则的取值范围是()A. B.C. D.10.已知一几何体的三视图,则它的体积为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,扇形的面积是,它的周长是,则弦的长为___________.12.已知函数,若,使得,则实数a的取值范围是___________.13.已知函数若,则实数___________.14.设函数,且;(1)若,求的最小值;(2)若在上能成立,求实数的取值范围15.设是定义在上且周期为2的函数,在区间上,其中.若,则的值是____________.16.已知函数,若、、、、满足,则的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,在同一周期内,当时,取得最大值3;当时,取得最小值.(1)求函数的解析式;(2)求函数的单调减区间;(3)当时,函数有两个零点,求实数m的取值范围.18.如图,四面体中,平面,,,,.(Ⅰ)求四面体的四个面的面积中,最大的面积是多少?(Ⅱ)证明:在线段上存在点,使得,并求的值19.已知直线与相交于点,直线(1)若点在直线上,求的值;(2)若直线交直线,分别为点和点,且点的坐标为,求的外接圆的标准方程20.已知函数f(x)=2asin+b的定义域为,函数最大值为1,最小值为-5,求a和b的值21.已知函数(1)证明:函数在区间上单调递增;(2)已知,试比较三个数a,b,c的大小,并说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据集合交集定义求解.【详解】故选:B【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.2、D【解析】由奇函数定义得,从而求得,然后由计算【详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【点睛】本题考查奇函数的定义,掌握奇函数的概念是解题关键.3、B【解析】根据全称命题的否定是特称命题判断可得.【详解】解:命题:为全称量词命题,其否定为;故选:B4、B【解析】首先确定函数的解析式,然后确定的取值范围即可.【详解】由题意可知函数关于直线对称,则,据此可得,由于,故令可得,函数的解析式为,则,结合三角函数的性质,考查临界情况:当时,;当时,;则的取值范围是.本题选择B选项.【点睛】本题主要考查三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.5、B【解析】根据两角和的正切公式求出,再根据二倍角公式以及同角三角函数的基本关系将弦化切,代入求值即可.【详解】解:解得故选:【点睛】本题考查三角恒等变换以及同角三角函数的基本关系,属于中档题.6、B【解析】解不等式组即可得定义域.【详解】由得:所以函数的定义域是.故选:B7、A【解析】根据题意,由函数的解析式分析可得在为增函数且,结合函数的奇偶性分析可得在上为增函数,又由,则有,解可得的取值范围,即可得答案.【详解】根据题意,当时,,则在为增函数且,又由是定义在上的奇函数,则在上也为增函数,则在上为增函数,由,则有,解得:,即不等式的解集为;故选:A【点睛】本题考查函数奇偶性与单调性结合,解抽象函数不等式,有一定难度.8、B【解析】直接利用扇形面积计算得到答案.【详解】根据扇形的面积公式,计算扇形田的面积为Slr45270(平方米).故选:B.【点睛】本题考查了扇形面积,属于简单题.9、C【解析】根据偶函数的性质结合单调性可得,即可根据对数函数单调性解出不等式.【详解】由于函数是偶函数,由得,又因为函数在上是减函数,所以在上是增函数,则,即,解得.故选:C.10、C【解析】所求体积,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由扇形弧长、面积公式列方程可得,再由平面几何的知识即可得解.【详解】设扇形的圆心角为,半径为,则由题意,解得,则由垂径定理可得.故答案为:.12、【解析】将“对,使得,”转化为,再根据二次函数的性质和指数函数的单调性求得最值代入即可解得结果.【详解】当时,,∴当时,,当时,为增函数,所以时,取得最大值,∵对,使得,∴,∴,解得.故答案为:.13、2【解析】先计算,再计算即得解.【详解】解:,所以.故答案为:214、(1)3(2)或【解析】(1)由可得,再利用基本不等式中乘“1”法的应用计算可得;(2)将已知转化为不等式有解,再对参数分类讨论,分别计算可得.【小问1详解】函数,由,可得,所以,当时等号成立,又,,,解得时等号成立,所以的最小值是3.【小问2详解】由题知,在上能成立,即能成立,即不等式有解①当时,不等式的解集为,满足题意;②当时,二次函数开口向下,必存在解,满足题意;③当时,需,解得或综上,实数的取值范围是或15、##-0.4【解析】根据函数的周期性及可得的值,进而利用周期性即可求解的值.【详解】解:因为是定义在上且周期为2的函数,在区间上,所以,,又,即,解得,所以,故答案为:.16、【解析】设,作出函数的图象,可得,利用对称性可得,由可求得,进而可得出,利用二次函数的基本性质可求得的取值范围.【详解】作出函数的图象如下图所示:设,当时,,由图象可知,当时,直线与函数的图象有五个交点,且点、关于直线对称,可得,同理可得,由,可求得,所以,.因此,的取值范围是.故答案为:.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)根据函数在同一周期的最值,确定最小正周期和,再由最大值求出,即可得出函数解析式;(2)根据正弦函数的单调递减区间列出不等式求解,即可得出结果;(3)根据自变量的范围,先确定的范围及单调性,根据函数有两个零点,推出函数与直线有两不同交点,进而可得出结果.【详解】(1)因为函数,在同一周期内,当时,取得最大值3;当时,取得最小值,,,则,所以;又,所以,解得,又,所以,因此;(2)由,解得,∴函数的单调递减区间为;(3)由,解得,即函数的单调递增区间为;,所以在区间上单调递增,在上单调递增;所以,,,又有两个零点,等价于方程有两不等实根,即函数与直线有两不同交点,因此,只需,解得,即实数的取值范围是【点睛】思路点睛:已知含三角函数的函数在给定区间的零点个数求参数时,一般需要分离参数,将问题转化为三角函数与参数对应的直线交点问题求解,利用三角函数的性质,确定其在给定区间的单调性与最值等,即可求解(有时需要利用数形结合的方法求解).18、(Ⅰ);(Ⅱ)证明见解析.【解析】(1)易得,,,均为直角三角形,且的面积最大,进而求解即可;(2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM,可证得AC⊥平面MBN,从而使得AC⊥BM,利用相似和平行求解即可.试题解析:(1)由题设AB=1,AC=2,BC=,可得,所以,由PA⊥平面ABC,BC、AB⊂平面ABC,所以,,所以,又由于PA∩AB=A,故BC⊥平面PAB,PB⊂平面PAB,所以,所以,,,均为直角三角形,且的面积最大,.(2)证明:在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC由于BN∩MN=N,故AC⊥平面MBN.又BM⊂平面MBN,所以AC⊥BM.因为与相似,,从而NC=AC-AN=.由MN∥PA,得==.19、(1);(2).【解析】(1)求出两直线的交点P坐标,代入方程可得;(2)把B坐标代入方程可得,由方程联立可解得A点坐标,可设圆的一般方程,代入三点坐标后可解得其中的参数,最后再配方可得标准方程试题解析:(1)又P在直线l3上,,(2)在l3上,,联立l3,l1得:设△PAB的外接圆方程为x2+y2+Dx+Ey+F=0把P(0,1),A(1,0),B(3,2)代入得:△PAB的外接圆方程为x2+y2x+2y=0,即(x)2+(y+1)2=5点睛:第(2)题中求圆的方程,可不设圆方程的一般式,用以下方法求解:由于l1⊥l2,所以PAPB△PAB的外接圆是以AB为直径的圆外接圆方程为:(x)(x)+y(y+1)=0整理后得:(x)2+(y+1)2=520、a=12-6,b=-23+12,或a=-12+6,b=19-12.【解析】∵0≤x≤,∴-≤2x-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年南京城市职业学院单招职业倾向性测试题库及参考答案详解一套
- 2026年重庆公共运输职业学院单招职业技能考试题库带答案详解
- 2026年黑龙江冰雪体育职业学院单招综合素质考试题库及参考答案详解一套
- 2026年上海建桥学院单招职业适应性考试题库及参考答案详解
- 2026年甘肃林业职业技术学院单招职业技能考试题库及完整答案详解1套
- 2026年厦门安防科技职业学院单招职业适应性考试题库含答案详解
- 2026年浙江经济职业技术学院单招职业适应性测试题库及参考答案详解
- 2026年青海省玉树藏族自治州单招职业倾向性考试题库含答案详解
- 2026年杭州科技职业技术学院单招职业倾向性测试题库附答案详解
- 2026年山东外国语职业技术大学单招职业技能考试题库含答案详解
- 新疆大学答辩模板课件模板
- 医疗器械操作规程制度
- 制定健康生活计划课件
- 单侧双通道内镜下腰椎间盘摘除术手术护理配合1
- DL∕T 5161.8-2018 电气装置安装工程质量检验及评定规程 第8部分:盘、柜及二次回路接线施工质量检验
- 个体工商户雇佣合同(2024版)
- 老年运动与二十四节气(老年运动保健课件)
- DB36- 1149-2019 工业废水铊污染物排放标准
- 全国统一施工机械台班费用定额
- Q-SY 05018-2017 城镇燃气埋地钢质管道外防腐层检测技术规范
- 镁矿选矿超细粒矿物高效分选方法
评论
0/150
提交评论