版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏南京鼓楼区2026届数学高二上期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.过点且与直线平行的直线方程是()A. B.C. D.2.如图在平行六面体中,与的交点记为.设,,,则下列向量中与相等的向量是()A. B.C. D.3.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔的高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.4.已知动直线的倾斜角的取值范围是,则实数m的取值范围是()A. B.C. D.5.有下列三个命题:①“若,则互为相反数”的逆命题;②“若,则”的逆否命题;③“若,则”的否命题.其中真命题的个数是A.0 B.1C.2 D.36.在等比数列{an}中,a3,a15是方程x2+6x+2=0的根,则的值为()A. B.C. D.或7.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若018号被抽中,则下列编号也被抽中的是()A.076 B.122C.390 D.5228.鲁班锁运用了中国古代建筑中首创的榫卯结构,相传由春秋时代各国工匠鲁班所作,是由六根内部有槽的长方形木条,按横竖立三方向各两根凹凸相对咬合一起,形成的一个内部卯榫的结构体.鲁班锁的种类各式各样,千奇百怪.其中以最常见的六根和九根的鲁班锁最为著名.下图1是经典的六根鲁班锁及六个构件的图片,下图2是其中的一个构件的三视图(图中单位:mm),则此构件的表面积为()A. B.C. D.9.倾斜角为45°,在y轴上的截距为2022的直线方程是()A. B.C. D.10.如图,某铁路客运部门设计的从甲地到乙地旅客托运行李的费用c(元)与行李质量w(kg)之间的流程图.已知旅客小李和小张托运行李的质量分别为30kg,60kg,且他们托运的行李各自计费,则这两人托运行李的费用之和为()A.28元 B.33元C.38元 D.48元11.等比数列的公比,中有连续四项在集合中,则等于()A. B.C D.12.若倾斜角为的直线过两点,则实数()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.二项式的展开式中,项的系数为__________.14.设,若,则S=________.15.圆锥的轴截面是边长为2的等边三角形,为底面中心,为的中点,动点在圆锥底面内(包括圆周).若,则点形成的轨迹的长度为______16.已知数列前项和为,且,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)我们知道,装同样体积的液体容器中,如果容器的高度一样,那么侧面所需的材料就以圆柱形的容器最省.所以汽油桶等装液体的容器大都是圆柱形的,某卧式油罐如图1所示,它垂直于轴的截面如图2所示,已知截面圆的半径是1米,弧的长为米表示劣弧与弦所围成阴影部分的面积.(1)请写出函数表达式;(2)用求导的方法证明.18.(12分)在平面直角坐标系中,圆外的点在轴的右侧运动,且到圆上的点的最小距离等于它到轴的距离,记的轨迹为(1)求的方程;(2)过点的直线交于,两点,以为直径的圆与平行于轴的直线相切于点,线段交于点,证明:是的中点19.(12分)年世界人工智能大会已于年月在上海徐汇西岸举行,某高校的志愿者服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏.如图所示,、两个信号源相距米,是的中点,过点的直线与直线的夹角为,机器猫在直线上运动,机器鼠的运动轨迹始终满足:接收到点的信号比接收到点的信号晚秒(注:信号每秒传播米).在时刻时,测得机器鼠距离点为米.(1)以为原点,直线为轴建立平面直角坐标系(如图),求时刻时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线不超过米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?20.(12分)在平面直角坐标系中,已知点,轴于点,是线段上的动点,轴于点,于点,与相交于点.(1)判断点是否在抛物线上,并说明理由;(2)过点作抛物线的切线交轴于点,过抛物线上的点作抛物线的切线交轴于点,……,以此类推,得到数列,求,及数列的通项公式.21.(12分)一位父亲在孩子出生后,每月给小孩测量一次身高,得到前7个月的数据如下表所示.月龄1234567身高(单位:厘米)52566063656870(1)求小孩前7个月的平均身高;(2)求出身高y关于月龄x的回归直线方程(计算结果精确到整数部分);(3)利用(2)的结论预测一下8个月的时候小孩的身高参考公式:22.(10分)已知椭圆的上、下顶点分别为A,B,离心率为,椭圆C上的点与其右焦点F的最短距离为.(1)求椭圆C的标准方程;(2)若直线与椭圆C交于P,Q两点,直线PA与QB的斜率分别为,,且,那么直线l是否过定点,若过定点,求出该定点坐标;否则,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意设直线方程为,根据点在直线上求参数即可得方程.【详解】由题设,令直线方程为,所以,可得.所以直线方程为.故选:A.2、B【解析】利用空间向量的加法和减法法则可得出关于、、的表达式.【详解】故选:B.3、D【解析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【详解】由题设知:,又,△中,可得,在△中,,则.故选:D4、B【解析】根据倾斜角与斜率的关系可得,即可求m的范围.【详解】由题设知:直线斜率范围为,即,可得.故选:B.5、B【解析】①写出命题的逆命题,可以进行判断为真命题;②原命题和逆否命题真假性相同,而通过举例得到原命题为假,故逆否命题也为假;③写出命题的否命题,通过举出反例得到否命题为假【详解】①“若,则互为相反数”的逆命题是,若互为相反数,则;是真命题;②“若,则”,当a=-1,b=-2,时不满足,故原命题为假命题,而原命题和逆否命题真假性相同,故得到命题为假;③“若,则”的否命题是若,则,举例当x=5时,不满足不等式,故得到否命题是假命题;故答案为B.【点睛】这个题目考查了命题真假的判断,涉及命题的否定,命题的否命题,逆否命题,逆命题的相关概念,注意原命题和逆否命题的真假性相同,故需要判断逆否命题的真假时,只需要判断原命题的真假6、B【解析】由韦达定理得a3a15=2,由等比数列通项公式性质得:a92=a3a15=a2a16=2,由此求出答案【详解】解:∵在等比数列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故选B【点睛】本题考查等比数列中两项积与另一项的比值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用7、B【解析】根据系统抽样的特点,写出组数与对应抽取编号的关系式,即可判断和选择.【详解】根据题意,780名公务员中,采用系统抽样的方法抽取30人,则需要分为组,每组人;设第组抽取的编号为,故可设,又第一组抽中号,故可得,解得故,当时,.故选:.8、B【解析】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,进而求出表面积即可.【详解】由三视图可知,该构件是长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长方体的一个几何体,如下图所示,其表面积为:.故选:B.【点睛】本题考查几何体的表面积的求法,考查三视图,考查学生的空间想象能力与计算求解能力,属于中档题.9、A【解析】根据直线斜率与倾斜角的关系,结合直线斜截式方程进行求解即可.【详解】因为直线的倾斜角为45°,所以该直线的斜率为,又因为该直线在y轴上的截距为2022,所以该直线的方程为:,故选:A10、D【解析】根据程序框图分别计算小李和小张托运行李的费用,再求和得出答案.【详解】由程序框图可知,当时,元;当时,元,所以这两人托运行李的费用之和为元.故选:D11、C【解析】经分析可得,等比数列各项的绝对值单调递增,将五个数按绝对值的大小排列,计算相邻两项的比值,根据等比数列的定义即可求解.【详解】因为等比数列中有连续四项在集合中,所以中既有正数项也有负数项,所以公比,因为,所以,且负数项为相隔两项,所以等比数列各项的绝对值单调递增,按绝对值排列可得,因,,,,所以是中连续四项,所以,故选:C.12、A【解析】解方程即得解.【详解】解:由题得.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、80【解析】利用二项式的通项公式进行求解即可.【详解】二项式的通项公式为:,令,所以项的系数为,故答案为:8014、1007【解析】可证f(x)+f(1﹣x)=1,由倒序相加法可得所求为1007对的组合,即1007个1,可得答案【详解】解:∵函数f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案为:1007点睛】本题考查倒序相加法求和,推断出f(x)+f(1﹣x)=1是解题的关键.15、【解析】建立空间直角坐标系设,,,,于是,,因为,所以,从而,,此为点形成的轨迹方程,其在底面圆盘内的长度为16、,.【解析】由的递推关系,讨论、求及,注意验证是否满足通项,即可写出的通项公式.【详解】当时,,当且时,,而,即也满足,∴,.故答案为:,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)证明见解析【解析】(1)由弧长公式得,根据即可求解;(2)利用导数判断出在上单调递增,即可证明.【小问1详解】由弧长公式得,于是,【小问2详解】cos,显然在上单调递增,于是.18、(1)(2)证明见解析【解析】(1)设点,求得到圆上的最小距离为,根据题意得到,整理即可求得曲线的方程;(2)当直线的斜率不存在时,显然成立;当直线的斜率存在时,设直线的方程,联立方程组求得和,得到,结合抛物线的定义和方程求得,,结合,即可求解.【小问1详解】解:设点,(其中),由圆,可得圆心坐标为,因为在圆外,所以到圆上的点的最小距离为,又由到圆上的点的最小距离等于它到轴的距离,可得,即,整理得,即曲线的方程为【小问2详解】解:当直线的斜率不存在时,可得点为抛物线的交点,点为坐标原点,点为抛物线的准线与轴的交点,显然满足是的中点;当直线的斜率存在时,设直线的方程,设,,,则,联立方程组,整理得,因为,且,则,故,由抛物线的定义知,设,可得,所以,又因为,所以,解得,所以,因为在地物线上,所以,即,所以,即是的中点19、(1);(2)没有.【解析】(1)设机器鼠位置为点,由题意可得,即,可得的轨迹为以、为焦点的双曲线的右支,分析取值,即得解双曲线的方程,由可得P点坐标.(2)转化机器鼠与直线最近的距离为与直线平行的直线与双曲线相切时,平行线间的距离,设的方程为,与双曲线联立,求出的值,再利用平行线间的距离公式,即得解【详解】(1)设机器鼠位置为点,、,由题意可得,即,可得的轨迹为以、为焦点的双曲线的右支,设其方程为:(,),则、、,则的轨迹方程为:(),时刻时,,即,可得机器鼠所在位置的坐标为;(2)由题意,直线,设直线的平行线的方程为,联立,可得:,,解得,又,∴,∴,即:与双曲线的右支相切,切点即为双曲线右支上距离最近的点,此时与的距离为,即机器鼠距离最小的距离为,则机器鼠保持目前运动轨迹不变,没有“被抓”的风险.20、(1)在抛物线上,理由见解析(2),,.【解析】(1)根据直线的方程设出点的坐标,利用已知条件求出点的坐标即可判断点是否在抛物线上;(2)设出直线的直线方程,与抛物线联立,令,即可求出,同理可以求出,设出直线的直线方程,与抛物线联立,令即可求出的方程,若令,,即,故数列是首项,公比为的等比数列,即可求出数列的通项公式.【小问1详解】由已知条件得直线的方程为,设点,则,由直线的方程为可得点的坐标为,点满足抛物线,则点是否在抛物线上;【小问2详解】设的直线方程为,将直线与抛物线联立得,,解得,的直线方程为,则,即,由此可知,设的直线方程为,将直线与抛物线联立得,,解得,的直线方程为,则,即,由此可知设点,设直线方程为,将直线与抛物线联立得,,其中,即,,解得,直线的方程为,即,令得,即直线过点,则直线的斜率为,直线的方程也可以表示为,即,令,,即,则,即数列是首项,公比为的等比数列,故.21、(1)62;(2);(3)74.【解析】(1)直接利用平均数的计算公式即可求解;(2)套公式求出b、a,求出回归方程;(3)把x=8代入回归方程即可求出.【小问1详解】小孩前7个月的平均身高为.【小问2详解】(2)设回归直线方程是.由题中的数据可知.,..计算结果精确到整数部分,所以,于是,所以身高y关于月龄x的回归直线方程为.【小问3详解】由(2)知,.当x=8时,y=3×8+50=74,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保险理赔员绩效考评表
- 《基于物联网的农业废弃物厌氧发酵产沼气监控系统研究》教学研究课题报告
- 酒店经理五星级酒店管理绩效评定表
- 保护用户数据信息安全承诺书(5篇)
- 服务流程规范管理承诺书(5篇)
- 走进森林的探险之旅记事作文(13篇)
- 产品功能稳定性承诺函7篇范文
- 能源行业项目经理工程管理绩效考核表
- 玩具的奥秘写物作文4篇范文
- 换货信息保密协议
- 2025浙江金华义乌市水处理有限责任公司招聘5人考试参考题库及答案解析
- (正式版)DB61∕T 5062-2023 《挤密桩法处理地基技术规程》
- 摩托锯的使用课件
- 农光互补光伏发电项目可行性研究报告
- 基于STM32智能语音台灯设计
- 小儿肾积水护理课件
- 医院年度财务分析报告
- 年度教学教研工作汇报
- 足跟压疮护理
- 2025年全国高校黄大年式教师团队申报表
- 印刷业法律法规实施与影响考核试卷
评论
0/150
提交评论