版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省荆州市公安县高二数学第一学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若是真命题,是假命题,则A.是真命题 B.是假命题C.是真命题 D.是真命题2.在等差数列中,已知,则数列的前6项之和为()A.12 B.32C.36 D.723.函数在上单调递增,则k的取值范围是()A B.C. D.4.两圆x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直线的方程为()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=05.已知命题p:函数在(0,1)内恰有一个零点;命题q:函数在上是减函数,若p且为真命题,则实数的取值范围是A. B.2C.1<≤2 D.≤l或>26.在中,角,,所对的边分别为,,,若,则的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不确定7.若直线的斜率,则直线的倾斜角的取值范围是()A. B.C. D.8.已知直三棱柱中,,,,则异面直线与所成角的余弦值为()A. B.C. D.9.如图,M为OA的中点,以为基底,,则实数组等于()A. B.C. D.10.已知椭圆上一点到左焦点的距离为,是的中点,则()A.1 B.2C.3 D.411.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3C. D.212.1202年,意大利数学家斐波那契出版了他的《算盘全书》.他在书中收录了一些有意思的问题,其中有一个关于兔子繁殖的问题:如果1对兔子每月生1对小兔子(一雌一雄),而每1对小兔子出生后的第3个月里,又能生1对小兔子,假定在不发生死亡的情况下,如果用Fn表示第n个月的兔子的总对数,则有(n>2),.设数列{an}满足:an=,则数列{an}的前36项和为()A.11 B.12C.13 D.18二、填空题:本题共4小题,每小题5分,共20分。13.如图,椭圆的中心在坐标原点,是椭圆的左焦点,分别是椭圆的右顶点和上顶点,当时,此类椭圆称为“黄金椭圆”,则“黄金椭圆”的离心率___________.14.已知函数,则_________15.已知是双曲线的左、右焦点,若为双曲线上一点,且,则__________.16.设正项等比数列的公比为,前项和为,若,则_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦点为,且该椭圆过点(1)求椭圆的标准方程;(2)若椭圆上的点满足,求的值18.(12分)设椭圆:()的离心率为,椭圆上一点到左右两个焦点、的距离之和是4.(1)求椭圆的方程;(2)已知过的直线与椭圆交于、两点,且两点与左右顶点不重合,若,求四边形面积的最大值.19.(12分)已知数列满足(1)求数列的通项公式;(2)是否存在正实数a,使得不等式对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.20.(12分)在中,其顶点坐标为.(1)求直线的方程;(2)求的面积.21.(12分)直线:和:(1)若两直线垂直,求m的值;(2)若两直线平行,求平行线间的距离22.(10分)已知椭圆的离心率为,椭圆的上顶点到焦点的距离为.(1)求椭圆的方程;(2)若直线与椭圆相交于、两点(、不是左、右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】因为是真命题,是假命题,所以是假命题,选项A错误,是真命题,选项B错误,是假命题,选项C错误,是真命题,选项D正确,故选D.考点:真值表的应用.2、C【解析】利用等差数列的求和公式结合角标和定理即可求解.【详解】解:等差数列中,所以等差数列的前6项之和为:故选:C.3、A【解析】对函数求导,由于函数在给定区间上单调递增,故恒成立.【详解】由题意可得,,,,.故选:A4、C【解析】两圆方程相减得出公共弦所在直线的方程.【详解】两圆方程相减得,即x﹣2y+6=0则公共弦所在直线的方程为x﹣2y+6=0故选:C5、C【解析】命题p为真时:;命题q为真时:,因为p且为真命题,所以命题p为真,命题q为假,即,选C考点:命题真假6、C【解析】由正弦定理得出,再由余弦定理得出,从而判断为钝角得出的形状.【详解】因为,所以,所以,所以的形状为钝角三角形.故选:C7、B【解析】根据斜率的取值范围,结合来求得倾斜角的取值范围.【详解】设倾斜角为,因为,且,所以.故选:B8、C【解析】作出辅助线,找到异面直线与所成角,进而利用余弦定理及勾股定理求出各边长,最后利用余弦定理求出余弦值.【详解】如图所示,把三棱柱补成四棱柱,异面直线与所成角为,由勾股定理得:,,∴故选:C9、B【解析】根据空间向量减法的几何意义进行求解即可.【详解】,所以实数组故选:B10、A【解析】由椭圆的定义得,进而根据中位线定理得.【详解】解:由椭圆方程得,即,因为由椭圆的定义得,,所以,因为是的中点,是的中点,所以.故选:A11、D【解析】根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线定义,考查数形结合的数学思想方法,属于基础题.12、B【解析】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,再根据an=,即可求出数列{an}的前36项和【详解】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,∴前36项共有12项为偶数,∴数列{an}的前36项和为12×1+24×0=12.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】写出,,求出,根据以及即可求解,【详解】由题意,,,所以,,因为,则,即,即,所以,即,解得或(舍).故答案为:14、【解析】利用函数的解析式由内到外逐层计算可得的值.【详解】,,因此,.故答案为:.15、17【解析】根据双曲线的定义求解【详解】由双曲线方程知,,,又.,所以(1舍去)故答案为:1716、【解析】由可知公比,所以直接利用等比数列前项和公式化简,即可求出【详解】解:因为,所以,所以,所以,化简得,因为等比数列的各项为正数,所以,所以,故答案为:【点睛】此题考查等比数列前项和公式的应用,考查计算能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用两点间距离公式求得P到椭圆的左右焦点的距离,然后根据椭圆的定义得到a的值,结合c的值,利用a,b,c的平方关系求得的值,再结合焦点位置,写出椭圆的标准方程(2)利用向量的数量积,求得点满足的条件,再结合椭圆的方程,解得的值【小问1详解】解:设椭圆的长半轴长为a,短半轴长为b,半焦距为c,因为所以,即,又因为c=2,所以,又因为椭圆的中心在原点,焦点在x轴上,所以该椭圆的标准方程为.【小问2详解】解:因为,所以,即,又,所以,即.18、(1);(2)6.【解析】(1)本小题根据题意先求,,,再求椭圆的标准方程;(2)本小题先设过的直线的方程,再根据题意表示出四边形的面积,最后求最值即可.【详解】解:(1)∵椭圆上一点到左右两个焦点、的距离之和是4,∴即,∵,∴,又∵,∴.∴椭圆的标准方程为;(2)设点、的坐标为,,因为直线过点,所以可设直线方程为,联立方程,消去可得:,化简整理得,其中,所以,,因为,所以四边形是平行四边形,设平面四边形的面积为,则,设,则(),所以,因为,所以,,所以四边形面积的最大值为6.【点睛】本题考查椭圆的标准方程,相交弦等问题,是偏难题.19、(1)(2)【解析】(1)通过构造新数列求解;(2)由(1)得,再研究其单调性,从而得到最值,再解不等式即可求解.【小问1详解】由,假设其变形为,则有,所以,又.所以,即.【小问2详解】由(1),所以,令,则,所以,所以是递减数列,所以,所以使得不等式对一切正整数n都成立,则,即,因为为正实数,所以.20、(1)(2)【解析】(1)先求出AB的斜率,再利用点斜式写出方程即可;(2)先求出,再求出C到AB的距离即可得到答案.【小问1详解】由已知,,所以直线的方程为,即.【小问2详解】,C到直线AB的距离为,所以的面积为.21、(1);(2)【解析】(1)由直线一般方程的垂直公式,即得解;(2)由直线一般方程的平行公式,求得,再由平行线的距离公式,即得解.【小问1详解】∵两直线垂直,∴,解得【小问2详解】∵两直线平行,∴,解得或1,经过验证时两条直线重合,舍去.∴可得:直线:,:∴两直线间的距离22、(1);(2)证明见解析.【解析】(1)根据已知条件求出、、的值,可得出椭圆的标准方程;(2)设、,将直线的方程与椭圆的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积的坐标运算结合韦达定理可得出关于、所满足的等式,然后化简直线的方程,即可求得直线所过定点的坐标.【小问1详解】解:椭圆上顶点到焦点距离,又椭圆离心率为,故,,因此,椭圆方程为.【小问2详解】解:设、,由题意可知且,椭圆的右顶点为,则,,因为以为直径的圆过椭圆的右顶点,所以有,则,即,联立,,即,①由韦达定理得,,所以,,化简得,即或,均满足①式.当时,直线,恒过定点,舍
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年云南锡业职业技术学院单招职业倾向性测试题库含答案详解
- 2026年广西水利电力职业技术学院单招职业适应性测试题库及答案详解一套
- 2026年广东省广州市单招职业倾向性考试题库及参考答案详解1套
- 新昌社工面试题目及答案
- 甘孜州消防队面试题及答案
- 安全一夏快乐暑假-暑假假期安全主题班会课件
- 园区内企业反恐怖管理协议书范本
- 什邡市人力资源和社会保障局什邡市民政局关于2025年面向全市公开选调工作人员的备考题库及一套答案详解
- 广东省第二荣军优抚医院2025年非编人员招聘备考题库及参考答案详解
- 2025年中国能源建设集团辽宁电力勘测设计院有限公司社会成熟人才招聘备考题库及1套完整答案详解
- 全国高校黄大年式教师团队推荐汇总表
- 员工管理规章制度实施细则
- 社会心理学(西安交通大学)知到章节答案智慧树2023年
- 《安井食品价值链成本控制研究案例(论文)9000字》
- GB/T 4135-2016银锭
- GB/T 33084-2016大型合金结构钢锻件技术条件
- 关节镜肘关节检查法
- 生化讲座犬猫血液常规检验项目及正常值
- 马克思主义基本原理(完整版)
- 山茶油知识普及课件
- 心脑血管疾病的预防及治疗课件
评论
0/150
提交评论