版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届福建省泉州市永春县第一中学高一上数学期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,其中、是正实数,且,,则与的大小关系是()A. B.C. D.2.函数零点所在区间为A. B.C. D.3.已知,若,则的取值范围是()A. B.C. D.4.已知为钝角,且,则()A. B.C. D.5.已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4 B.C. D.26.下列函数中,在其定义域内单调递减的是()A. B.C. D.7.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()A. B.C. D.8.下列函数中,既是偶函数,又在区间上单调递增的函数是()A. B.C. D.9.若-4<x<1,则()A.有最小值1 B.有最大值1C.有最小值-1 D.有最大值-110.A B.C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则______12.在中,,则等于______13.已知,则的值为__________14.计算_____________.15.若,则的取值范围为___________.16.已知命题:,都有是真命题,则实数取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算:(1);(2)18.已知二次函数()若函数在上单调递减,求实数的取值范围()是否存在常数,当时,在值域为区间且?19.已知函数,其定义域为D(1)求D;(2)设,若关于的方程在内有唯一零点,求的取值范围20.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,点E和F分别为BC和A1C的中点(1)求证:EF∥平面A1B1BA;(2)求直线A1B1与平面BCB1所成角的大小.21.(1)求函数的单调递增区间;(2)求函数的单调递减区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用基本不等式结合二次函数的基本性质可得出与的大小关系.【详解】因为、是正实数,且,则,,因此,.故选:B.2、C【解析】利用零点存在性定理计算,由此求得函数零点所在区间.【详解】依题意可知在上为增函数,且,,,所以函数零点在区间.故选C.【点睛】本小题主要考查零点存在性定理的运用,属于基础题.3、B【解析】由以及,可得,即得,再根据基本不等式即可求的取值范围.【详解】解:,不妨设,若,由,得:,即与矛盾;同理,也可导出矛盾,故,,即,而,即,即,当且仅当,即时等号成立,又,故,即的取值范围是.故选:B.4、C【解析】先求出,再利用和角的余弦公式计算求解.【详解】∵为钝角,且,∴,∴故选:C【点睛】本题主要考查同角的平方关系,考查和角的余弦公式的应用,意在考查学生对这些知识的理解掌握水平.5、B【解析】根据三视图得到几何体的直观图,然后结合图中的数据计算出各棱的长度,进而可得最长棱【详解】由三视图可得,该几何体是如图所示的四棱锥,底面是边长为2的正方形,侧面是边长为2的正三角形,且侧面底面根据图形可得四棱锥中的最长棱为和,结合所给数据可得,所以该四棱锥的最长棱为故选B【点睛】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑.熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.考查空间想象能力和计算能力6、B【解析】根据函数的单调性确定正确选项【详解】在上递增,不符合题意.在上递减,符合题意.在上有增有减,不符合题意.故选:B7、D【解析】答案:D左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案8、D【解析】根据常见函数的单调性和奇偶性可直接判断出答案.【详解】是奇函数,不满足题意;的定义域为,是非奇非偶函数,不满足题意;是非奇非偶函数,不满足题意;是偶函数,且在区间上单调递增,满足题意;故选:D9、D【解析】先将转化为,根据-4<x<1,利用基本不等式求解.【详解】又∵-4<x<1,∴x-1<0∴-(x-1)>0∴.当且仅当x-1=,即x=0时等号成立故选:D【点睛】本题主要考查基本不等式的应用,还考查了转化求解问题的能力,属于基础题.10、A【解析】由题意可得:本题选择A选项.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据,利用诱导公式转化为可求得结果.【详解】因为,所以.故答案为:.【点睛】本题考查了利用诱导公式求值,解题关键是拆角:,属于基础题.12、【解析】由题;,又,代入得:考点:三角函数的公式变形能力及求值.13、【解析】答案:14、【解析】将所给式子通分后进行三角变换可得结果【详解】由题意得故答案为:【点睛】易错点睛:本题考查三角恒等化简,本题的关键是通分后用正弦的差角公式,在由化成时注意角的顺序,这是容易出错的地方,考查运算能力,属于中档题.15、【解析】一元二次不等式,对任意的实数都成立,与x轴最多有一个交点;由对勾函数的单调性可以求出m的范围.【详解】由,得.由题意可得,,即.因为,所以,故.故答案为:16、【解析】由于,都有,所以,从而可求出实数的取值范围【详解】解:因为命题:,都有是真命题,所以,即,解得,所以实数的取值范围为,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据指数幂的运算法则,以及根式与指数幂的互化公式,直接计算,即可得出结果;(2)根据对数的运算法则,直接计算,即可得出结果.【详解】(1)原式=(2)原式==18、(1).(2)存在常数,,满足条件【解析】(1)结合二次函数的对称轴得到关于实数m的不等式,求解不等式可得实数的取值范围为(2)在区间上是减函数,在区间上是增函数.据此分类讨论:①当时,②当时,③当,综上可知,存在常数,,满足条件试题解析:()∵二次函数的对称轴为,又∵在上单调递减,∴,,即实数的取值范围为()在区间上是减函数,在区间上是增函数①当时,在区间上,最大,最小,∴,即,解得②当时,在区间上,最大,最小,∴,解得③当,在区间上,最大,最小,∴,即,解得或,∴综上可知,存在常数,,满足条件点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析19、(1)(2)【解析】(1)由可求出结果;(2)由求出或,根据方程在内有唯一零点,得到,解得结果即可.【小问1详解】由得,得,得,所以函数的定义域为,即.【小问2详解】因为,所以,所以或,因为关于的方程在内有唯一零点,且,所以,解得.20、(1)详见解析(2)30°【解析】(1)连接A1B,结合三角形中位线定理,得到平行,结合直线与平面平行,的判定定理,即可.(2)取的中点N,连接,利用直线与平面垂直判定定理,得到平面,找出即为所求的角,解三角形,计算该角的大小,即可【详解】解:(1)证明:如图,连接A1B.在△A1BC中,因为E和F分别是BC和A1C的中点,所以EF∥BA1.又EF⊄平面A1B1BA,所以EF∥平面A1B1BA(2)解:因为AB=AC,E为BC的中点,所以AE⊥BC.因为AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,从而BB1⊥AE.又BC∩BB1=B,所以AE⊥平面BCB1,.取BB1的中点M和B1C的中点N,连接A1M,A1N,NE.因为N和E分别为B1C和BC的中点,所以NE∥B1B,NE=B1B,故NE∥A1A且NE=A1A,所以A1N∥AE,且A1N=AE.因为AE⊥平面BCB1,所以A1N⊥平面BCB1,从而∠A1B1N为直线A1B1与平面BCB1所成的角.在△ABC中,可得AE=2,所以A1N=AE=2.因为BM∥AA1,BM=AA1,所以A1M∥AB,A1M=AB,由AB⊥BB1,有A1M⊥BB1.在Rt△A1MB1中,可得A1B1=4.在Rt△A1NB1中,sin∠A1B1N=,因此∠A1B1N=30°.所以直线A1B1与平面BCB1所成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年嵩山少林武术职业学院单招职业适应性测试题库及完整答案详解1套
- 2026年甘肃省陇南地区单招职业适应性测试题库及参考答案详解一套
- 2026年河北省石家庄市单招职业倾向性测试题库及答案详解一套
- 2026年长沙电力职业技术学院单招职业适应性考试题库及完整答案详解1套
- 2026年岳阳现代服务职业学院单招职业技能考试题库及参考答案详解1套
- 2026年江苏商贸职业学院单招综合素质考试题库及完整答案详解1套
- 2026年湖南都市职业学院单招职业适应性考试题库含答案详解
- 2026年嵩山少林武术职业学院单招职业技能测试题库及完整答案详解1套
- 2026年闽北职业技术学院单招职业适应性测试题库附答案详解
- 2026年宁波幼儿师范高等专科学校单招职业倾向性测试题库及答案详解一套
- 2025秋人教版(新教材)初中美术八年级上册知识点及期末测试卷及答案
- 2026年保安员考试题库500道附完整答案(历年真题)
- 2025至2030中国司法鉴定行业发展研究与产业战略规划分析评估报告
- (2025年)危重病人的观察与护理试题及答案
- 膝关节韧带损伤康复课件
- 个人契约协议书范本
- 医药区域经理述职报告
- 建筑施工项目职业病危害防治措施方案
- 船员上船前安全培训课件
- 袖阀注浆管施工方案
- 市政工程桩基检测技术操作规程
评论
0/150
提交评论