2026届山西省六校高一数学第一学期期末经典模拟试题含解析_第1页
2026届山西省六校高一数学第一学期期末经典模拟试题含解析_第2页
2026届山西省六校高一数学第一学期期末经典模拟试题含解析_第3页
2026届山西省六校高一数学第一学期期末经典模拟试题含解析_第4页
2026届山西省六校高一数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山西省六校高一数学第一学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在的区间是()A. B.C. D.2.命题“,使.”的否定形式是()A.“,使” B.“,使”C.“,使” D.“,使”3.设函数,若关于方程有个不同实根,则实数的取值范围为()A. B.C. D.4.将的图象向右平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到的图象,则A. B.C. D.5.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.

4,6

B.C

D.6.如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角()A.90° B.60°C.45° D.30°7.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上一点,则A. B.C. D.8.在区间上单调递减的函数是()A. B.C. D.9.黄金分割比例广泛存在于许多艺术作品中.在三角形中,底与腰之比为黄金分割比的三角形被称作黄金三角形,被认为是最美的三角形,它是两底角为72°的等腰三角形.达芬奇的名作《蒙娜丽莎》中,在整个画面里形成了一个黄金三角形.如图,在黄金三角形中,,根据这些信息,可得()A. B.C. D.10.直线的斜率为,在y轴上的截距为b,则有()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,则该圆锥的底面半径为______12.已知函数f(x)=(5-a)x-a+1,x<1ax,x≥1,满足对任意都有成立,那么实数13.《九章算术》是我国古代内容极为丰富的数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步.问为田几何?”其意思为:“有一块扇形的田,弧长为30步,其所在圆的直径为16步,问这块田的面积是多少平方步?”该问题的答案为___________平方步.14.已知实数x、y满足,则的最小值为____________.15.在中,若,则的形状一定是___________三角形.16.设函数=,则=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的终边与单位圆交于点(1)写出、、值;(2)求的值18.已知(1)画出这个函数的图象(2)当0<a<2时f(a)>f(2),利用函数图象求出a的取值范围19.已知△ABC中,A(2,-1),B(4,3),C(3,-2)(1)求BC边上的高所在直线的一般式方程;(2)求△ABC的面积20.已知,,函数.(1)当时,求不等式的解集;(2)若,求的最小值,并求此时a,b的值.21.已知函数的定义域为,不等式的解集为设集合,且,求实数的取值范围;定义且,求

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据函数零点存在性定理判断即可【详解】,,,故零点所在区间为故选:B2、D【解析】根据特称命题的否定是全称命题,即可得出命题的否定形式【详解】因为特称命题的否定是全称命题,所以命题“,使”的否定形式为:,使故选:D3、B【解析】等价于,即或,转化为与和图象交点的个数为个,作出函数的图象,数形结合即可求解【详解】作出函数的图象如下图所示变形得,由此得或,方程只有两根所以方程有三个不同实根,则,故选:B【点睛】易错点点睛:本题的易错点为函数的图像无限接近直线,即方程只有两根,另外难点在于方程的变形,即因式分解4、A【解析】由三角函数图象的平移变换及伸缩变换可得:将的图象所有点的横坐标缩短到原来的倍,再把所得图象向左平移个单位,即可得到的图象,得解【详解】解:将的图象所有点的横坐标缩短到原来的倍得到,再把所得图象向左平移个单位,得到,故选A【点睛】本题主要考查了三角函数图象的平移变换及伸缩变换,属于简单题5、B【解析】利用交、并、补集运算,对答案项逐一验证即可【详解】,A错误={2,3,4,5,6,7}=,B正确

{3,4,5,7},C错误,,D错误故选:B【点睛】本题考查集合的混合运算,较简单6、B【解析】将原图还原到正方体中,连接SC,AS,可确定(或其补角)是PB与AC所成的角.【详解】因为ABCD为正方形,PA⊥平面ABCD,PA=AB,可将原图还原到正方体中,连接SC,AS,则PB平行于SC,如图所示.∴(或其补角)是PB与AC所成的角,∵为正三角形,∴,∴PB与AC所成角为.故选:B.7、A【解析】由三角函数定义得tan再利用同角三角函数基本关系求解即可【详解】由三角函数定义得tan,即,得3cos解得或(舍去)故选A【点睛】本题考查三角函数定义及同角三角函数基本关系式,熟记公式,准确计算是关键,是基础题8、C【解析】依次判断四个选项的单调性即可.【详解】A选项:增函数,错误;B选项:增函数,错误;C选项:当时,,为减函数,正确;D选项:增函数,错误.故选:C.9、B【解析】由题意,结合二倍角余弦公式、平方关系求得,再根据诱导公式即可求.【详解】由题设,可得,,所以,又,所以.故选:B10、A【解析】将直线方程化为斜截式,由此求得正确答案.【详解】,所以.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】设该圆锥的底面半径为r,推导出母线长为2r,再由圆锥的高为,能求出该圆锥的底面半径【详解】设该圆锥的底面半径为r,将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,,解得,圆锥的高为,,解得故答案为1【点睛】本题考查圆锥的底面半径的求法,考查圆锥性质、圆等基础知识,考查运算求解能力,是基础题12、【解析】利用求解分段函数单调性的方法列出不等式关系,由此即可求解【详解】由已知可得函数在R上为单调递增函数,则需满足,解得,所以实数a的取值范围为,故答案为:13、120【解析】利用扇形的面积公式求解.【详解】由题意得:扇形弧长为30,半径为8,所以扇形的面积为:,故答案为:12014、【解析】利用基本不等式可得,即求.【详解】依题意,当且仅当,即时等号成立.所以的最小值为.故答案为:.15、等腰【解析】根据可得,利用两角和的正弦公式展开,再逆用两角差的正弦公式化简,结合三角形内角的范围可得,即可得的形状.【详解】因,,所以,即,所以,可得:,因为,,所以所以,即,故是等腰三角形.故答案为:等腰.16、【解析】由题意得,∴答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)=;=;=(2)【解析】(1)根据已知角的终边与单位圆交于点,结合三角函数的定义即可得到、、的值;(2)依据三角函数的诱导公式化简即可,,最后利用第(1)小问的结论得出答案.试题解析:(1)已知角终边与单位圆交于点,.(2).点睛:本题考查任意角的三角函数的定义,即当角的终边与单位圆的交点为时,则,,,运用诱导公式化简求值,在化简过程中必须注意函数名是否改变以及符号是否改变等.本题是基础题,解答的关键是熟悉任意角的三角函数的定义,单位圆的知识.18、(1)见解析;(2){a|0<a<}.【解析】(1)由函数整体加绝对值知,只需将函数位于x轴下方的图像关于x对称即可;(2)利用数形结合,结合a范围即可得解.【详解】(1)如图:​(2)令f(a)=f(2),即|log3a|=|log32|,解得a=或a=2.从图像可知,当0<a<时,满足f(a)>f(2),所以a的取值范围是{a|0<a<}.【点睛】本题主要考查了对数函数的图象及图象变换,利用数形结合解不等式.19、(1)x+5y+3=0;(2)S△ABC=3【解析】求三角形一边的高所在的直线方程时,可利用点斜式求解,由于高线过三角形一个顶点,与对边垂直,借助垂直求出斜率,利用点斜式写出直线方程,已知三角形三个顶点的坐标求面积,最简单的方法是求出一边的长以及这边所在直线的方程,高线长利用点到直线的距离公式求出,从而求出面积.试题解析:(1)由斜率公式,得kBC=5,所以BC边上的高所在直线方程为y+1=-(x-2),即x+5y+3=0.(2)由两点间的距离公式,得|BC|=,BC边所在的直线方程为y+2=5(x-3),即5x-y-17=0,所以点A到直线BC的距离d=,故S△ABC=.【点睛】已知三角形三个顶点的坐标求面积,最简单的方法是求出一边的长以及这边所在直线的方程,高线长利用点到直线的距离公式求出,从而求出面积,还可求出三边长借助海伦公式去求;求三角形一边的高所在的直线方程时,可利用点斜式求解,由于高线过三角形一个顶点,与对边垂直,借助垂直求出斜率,利用点斜式写出直线方程.20、(1)(2)最小值是3,,【解析】(1)代入a,b,解分式不等式即可;(2)利用“1”的变形及均值不等式求出最小值,根据等号成立的条件求出a,b.【小问1详解】当时,,因为由整理得,解得,所以不等式的解集是【小问2详解】因为,所以,,因为所以,即的最小值是3.当且仅当即时等号成立,又,所以,,21、(1);(2)【解析】由二次不等式的解法得,由集合间的包含关系列不等式组求解即可;由对数函数的定义域可得,利用指数函数的单调性解不等式可得,由定义且,先求出,再求出即可【详解】解不等式,得:,即,又集合,且,则有,解得:,故答案为.令,解得:,即,由定义且可知:即,即,故答案为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论