版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山西省运城市景胜中学数学高一上期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.满足的集合的个数为()A. B.C. D.2.在中,若,且,则的形状为A.等边三角形 B.钝角三角形C.锐角三角形 D.等腰直角三角形3.命题“”的否定为()A. B.C. D.4.一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为A. B.C. D.5.若是钝角,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角6.已知函数的部分图象如图所示,下列结论正确的个数是()①②将的图象向右平移1个单位,得到函数的图象③的图象关于直线对称④若,则A.0个 B.1个C.2个 D.3个7.已知函数是定义在R上的周期为2的偶函数,当时,,则A. B.C. D.8.已知函数在[-2,1]上具有单调性,则实数k的取值范围是()A.k≤-8 B.k≥4C.k≤-8或k≥4 D.-8≤k≤49.一半径为2m的水轮,水轮圆心O距离水面1m;已知水轮按逆时针做匀速转动,每3秒转一圈,且当水轮上点P从水中浮现时(图中点)开始计算时间.如图所示,建立直角坐标系,将点P距离水面的高度h(单位:m)表示为时间t(单位:s)的函数,记,则()A.0 B.1C.3 D.410.已知a=4-5,b=log45,c=log0.45,则a,b,c的大小关系为()A.a>b>c B.c>b>aC.b>a>c D.c>a>b二、填空题:本大题共6小题,每小题5分,共30分。11.已知,函数在上单调递增,则的取值范围是__12.设,,,则______13.函数=(其中且)的图象恒过定点,且点在幂函数的图象上,则=______.14.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积为___________.15.若,则____________.16.已知函数,若,则的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,函数的最小正周期为,是函数的一条对称轴.(1)求函数的对称中心和单调区间;(2)若,求函数在的最大值和最小值,并写出对应的的值18.已知集合,集合或,全集(1)若,求;(2)若,求实数a的取值范围19.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58为了预测以后各月的患病人数,甲选择的了模型,乙选择了模型,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数,结果4月,5月,6月份的患病人数分别为66,82,115,1你认为谁选择的模型较好?需说明理由2至少要经过多少个月患该传染病的人数将会超过2000人?试用你选择的较好模型解决上述问题20.已知函数的最小正周期为,再从下列两个条件中选择一个作为已知条件:条件①:的图象关于点对称;条件②:的图象关于直线对称(1)请写出你选择的条件,并求的解析式;(2)在(1)的条件下,当时,求的最大值和最小值,并指出相应的取值注;如果选择条件①和条件②分别解答,按第一个解答计分21.已知函数(1)求的单调递增区间;(2)求在区间上的值域
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】列举出符合条件的集合,即可得出答案.【详解】满足的集合有:、、.因此,满足的集合的个数为.故选:B.【点睛】本题考查符合条件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.2、D【解析】由条件可得A为直角,结合,可得解.【详解】,=,又,为等腰直角三角形,故选D.【点睛】本题考查了向量数量积表示两个向量的垂直关系,考查了三角形的形状,属于基础题.3、C【解析】“若,则”的否定为“且”【详解】根据命题的否定形式可得:原命题的否定为“”故选:C4、D【解析】由几何体的正视图和俯视图可知,三棱锥的顶点在底面内的射影在底面棱上,则原几何体如图所示,从而侧视图为D.故选D5、D【解析】由求出,结合不等式性质即可求解.【详解】,,,在第四象限.故选:D6、C【解析】由函数的图象的顶点坐标求出A,由周期求出,可判断①,由点的坐标代入求得,可得函数的解析式,再根据函数图象的变换规律可判断②,将代入解析式中验证,可判断③;根据三角函数的图象和性质可判断④,即可得到答案【详解】由函数图象可知:,函数的最小正周期为,故,将代入解析式中:,得:由于,故,故①错误;由以上分析可知,将的图象向右平移1个单位,得到函数的图象,故②正确;将代入得,故③错误;由于函数的最小正周期为8,而,故不会出现一个取到最大或最小值另一个取到最小或最大的情况,故,故④正确,故选:C7、A【解析】依题意有.8、C【解析】根据二次函数的单调性和对称轴之间的关系,建立条件求解即可.【详解】函数对称轴为,要使在区间[-2,1]上具有单调性,则或,∴或综上所述的范围是:k≤-8或k≥4.故选:C.9、C【解析】根据题意设h=f(t)=Asin(ωt+φ)+k,求出φ、A、T和k、ω的值,写出函数解析式,计算f(t)+f(t+1)+f(t+2)的值【详解】根据题意,设h=f(t)=Asin(ωt+φ)+k,(φ<0),则A=2,k=1,因为T=3,所以ω,所以h=2sin(t+φ)+1,又因为t=0时,h=0,所以0=2sinφ+1,所以sinφ,又因为φ<0,所以φ,所以h=f(t)=2sin(t)+1;所以f(t)sint﹣cost+1,f(t+1)=2sin(t)+1=2cost+1,f(t+2)=2sin(t)+1sint﹣cost+1,所以f(t)+f(t+1)+f(t+2)=3故选:C10、C【解析】根据指数函数、对数函数的单调性,判断的大致范围,即可比较大小.【详解】因为,且,故;又,故;又,故;故.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】本题已知函数的单调区间,求参数的取值范围,难度中等.由,得,又函数在上单调递增,所以,即,注意到,即,所以取,得考点:函数的图象与性质【方法点晴】已知函数为单调递增函数,可得变量的取值范围,其必包含区间,从而可得参数的取值范围,本题还需挖掘参数的隐含范围,即函数在上单调递增,可知,因此,综合题12、【解析】利用向量的坐标运算先求出的坐标,再利用向量的数量积公式求出的值【详解】因为,,,所以,所以,故答案为【点睛】本题考查向量的坐标运算,考查向量的数量积公式,熟记坐标运算法则,准确计算是关键,属于基础题13、9【解析】由题意知,当时,.即函数=的图象恒过定点.而在幂函数的图象上,所以,解得,即,所以=9.14、【解析】计算出等边的边长,计算出由弧与所围成的弓形的面积,进而可求得勒洛三角形的面积.【详解】设等边三角形的边长为,则,解得,所以,由弧与所围成的弓形的面积为,所以该勒洛三角形的面积.故答案为:.15、##0.6【解析】,根据三角函数诱导公式即可求解.【详解】=.故答案为:.16、【解析】画出函数图象,可得,,再根据基本不等式可求出.【详解】画出的函数图象如图,不妨设,因为,则由图可得,,可得,即,又,当且仅当取等号,因为,所以等号不成立,所以解得,即的取值范围是.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)对称中心是,单调递增区间是,单调递减区间是(2)当时,,当时,【解析】(1)由函数的最小正周期,求得,再根据当时,函数取到最值求得,根据函数的性质求对称中心和单调区间;(2)写出的解析式,根据定义域,求最值【详解】(1),,,所以,,对称中心是,单调递增区间是,单调递减区间是(2),,当时,,当时,【点睛】三角函数最值问题要注意整体代换思想的体现,由的取值范围推断的取值范围18、(1)(2)【解析】(1)利用并集和补集运算法则进行计算;(2)根据集合间的包含关系,比较端点值的大小,求出实数a的取值范围.【小问1详解】当时,,所以,则;【小问2详解】因为A真含于B,所以满足或,解得:,所以实数a的取值范围是19、(1)应将作为模拟函数,理由见解析;(2)个月.【解析】根据前3个月的数据求出两个函数模型的解析式,再计算4,5,6月的数据,与真实值比较得出结论;由(1),列不等式求解,即可得出结论【详解】由题意,把,2,3代入得:,解得,,,所以,所以,,;把,2,3代入,得:,解得,,,所以,所以,,;、、更接近真实值,应将作为模拟函数令,解得,至少经过11个月患该传染病的人数将会超过2000人【点睛】本题主要考查了函数的实际应用问题,以及指数与对数的运算性质的应用,其中解答中认真审题,正确理解题意,求解函数的解析式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.20、(1);(2)时,有最小值,时,有最大值2.【解析】(1)若选①,根据周期求出,然后由并结合的范围求出,最后求出答案;若选②,根据周期求出,然后由并结合的范围求出,最后求出答案;(2)结合(1),先求出的范围,然后结合正弦函数的性质求出答案.【小问1详解】若选①,由题意,,因为函数的图象关于点对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年重庆市泸州市单招职业倾向性考试题库及答案详解1套
- 2026年太原幼儿师范高等专科学校单招职业适应性测试题库含答案详解
- 2026年濮阳石油化工职业技术学院单招职业技能测试题库及参考答案详解一套
- 2026年厦门工学院单招职业适应性测试题库含答案详解
- 2026年山东铝业职业学院单招综合素质考试题库及完整答案详解1套
- 南光集团工程经理招聘面试题库含答案
- 食堂成本控制员考试大纲含答案
- 2026年湖南软件职业技术大学单招职业倾向性测试题库含答案详解
- 2026年重庆机电职业技术大学单招综合素质考试题库及完整答案详解1套
- 党建考核主管工作手册含答案
- 小区保安服务项目背景及需求分析
- 2025液化石油气站年度安全教育培训计划及考试试题(含答案)
- 2025年义乌市机关事业单位编外聘用人员公开招聘179人笔试备考试题附答案详解(预热题)
- 医院医疗质量控制体系构建
- 呼吸内镜介入治疗汇报
- 2025年总工会招聘考试工会知识模拟试卷及答案
- 招聘费用专项审计方案(3篇)
- 计算机组成原理(第2版)课后习题解答 谭志虎
- 2025年标准广东省食品安全员试题及答案
- 医疗物资(血液制品)低空无人飞行器运输技术
- 三年级上册语文1-8单元习作范文暑假预习
评论
0/150
提交评论