版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024青海省西宁市公务员考试数量关系专项练习题
第一部分单选题(150题)
1、5,4,10,8,15,16,(),()
A、20,18
B、18,32
C、20,32
D、18,36
【答案】:答案:C
解析:从题干中给出的数字不难看出,奇数项5,10,15,(20)构成公
差为5的等差数列,偶数项4,8,16,(32)构成公比为2的等比数列。
故选C。
2、有一1500米的环形跑道,甲,乙二人司时同地出发,若同方向跑,
50分钟后甲比乙多跑一圈,若以反方向跑,2分钟后二人相遇,则乙
的速度为()o
A、330米/分钟
B、360米/分钟
C、375米/分钟
D、390米/分钟
【答案】:答案:B
解析:同向追及50分钟后甲比乙多跑一圈得:(V甲一V乙)X50=
1500;由反向跑2分钟后相遇有:(V甲+V乙)X2=1500,解得V乙
=360(米/分钟)。故选B。
3、2,12,40,112,()
A、224
B、232
C、288
D、296
【答案】:答案:C
解析:原数列可以写成1X2,3X4,5X8,7X16,前一个乘数数列为
1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,
16,是等比数列,下一项是32,所以原数列空缺项为9X32=288。故
选C。
4、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,
同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速
度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于
是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400
米,甲一共比乙多跑200+400X2=1000(米),乙跑了2000米,甲跑了
3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的
3000・2000=1.5倍。故选B。
5、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的
食盐水900克,问5力的食盐水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:设需要5%的食盐水x克,则需要20%的食盐水(900—x)克;根
据混合后浓度为15%,得[xX5%+(900—x)X20%]=900X15%,解得x
=300(克)。故选C。
6、2,11,32,()
A、56
B、42
C、71
D、134
【答案】:答案:C
解析:观察题干数列可得:2=13+1,11=23+3,32=33+5,()=43+7。
故括号处应为71o故选C。
7、2,2,6,14,34,()
A、82
B、50
C、48
【)、62
【答案】:答案:A
解析:2+2X2=6;2+6X2=14;6+14X2=34;14+34X2=82o故选A。
8、9,20,42,86,(),350
A、172
B、174
C、180
D、182
【答案】:答案:B
解析:20=9X2+2,42=20X2+2,86=42X2+2,第一项X2+2=
第二项,即所填数字为86X2+2=174。故选B。
9、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:把一根钢管锯成5段需要锯4次,所以每锯一次需要8+4=2(分
钟)。则锯20段需要锯19次,所需的时间为19X2=38(分钟)。故选B。
13、2,4,12,32,88,()
A、140
B、180
C、220
D、240
【答案】:答案:D
解析:12=2X(2+4),32=2X(4+12),88=2X(32+12),第三项
=2X(第一项+第二项),即所填数字为2X(88+32)=240。故选D。
14、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多
少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把
大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2
与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆
分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使
加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不
如将它换成2个3。因为2X2X2=8,而3X3=9。故拆分出的自然数中,
至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,
其乘积最大,最大值为243X2=486。故选B。
15、7,7,9,17,43,()
A、119
B、117
C、123
D、121
【答案】:答案:C
解析:依次将相邻两项做差得0,2,10,26,再次做差得2,6,18。
构成一个公比为3的等比数列,即所填数字为43+26+18X3=123。政选
Co
16、2,1,4,6,26,158,()
A、5124
B、5004
C、4110
D、3676
【答案】:答案:C
解析:4=2X1+2,6=lX4+2,26=4X6+2,158=6X26+2,an=an-
2Xan-l+2,即所填数字是158X26+2=4110,故选C。
17、某旅游部门规划一条从甲景点到乙景点的旅游线路,经测试,旅
游船从甲到乙顺水匀速行驶需3小时;从乙返回甲逆水匀速行驶需4小
时。假设水流速度恒定,甲乙之间的距离为y公里,旅游船在静水中
匀速行驶y公里需要x小时,则x满足的方程为()。
A、l/3-l/x=l/x-l/4
B、l/3-l/x=l/4+l/x
C、l/(x+3)=l/4-l/x
D、l/(4-x)=l/x+l/3
【答案】:答案:A
解析:由题意可知,旅游船的静水速度为y/x公里/时,顺水速度为
y/3公里/时,逆水速度为y/4公里/时。由水速二水速度-静水速度二静
水速度-逆水速度,我们可得:y/3-y/x=y/x-y/4,消去y,得:1/3-
l/x=l/x-l/4,故选Ao考点点拨:解决流水问题的关键在于找出船速、
水速、顺水速度和逆水速度四个量,然后根据其之间的关系求出未知
量。故选Ao
18、某收藏家有三个古董钟,时针都掉了,只剩下分针,而且都走得
较快,每小时分别快2分钟、6分钟及12分钟。如果在中午将这三个
钟的分针都调整指向钟面的12点位置,多少小时后这3个钟的分针会
指在相同的分钟位置?
A.24
B.26
C.28
D.30
【答案】:答案:D
解析:由题意可得:假设每小时快2分钟、快6分钟、快12分钟的古
董钟分别为A钟、B钟、C钟,则B钟与A钟速度差为分钟/小时,已
知整个钟盘有60分钟,即经过小时,B钟的分针比A钟的分针恰好多
走一圈,且此时两钟分针重合,同理,C钟与A钟速度差为分钟/小时,
即经过小时,C钟的分针比A钟的分针恰好多走一圈,此时两钟分针重
合,取6和15的最小公倍数30,即经过30小时,B钟的分针比A钟
的分针恰好多走2圈,C钟的分针比A钟的分针恰好多走5圈,且此时
三个分针处于同一个位置。故正确答案为D,
19、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每
天平均生产20套服装,就比订货任务少生产100套;如果每天生产23
套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少
套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的
天数为40天,所以这批服装为20X40+100=900(套)。故选C。
20、2.1,2.2,4.1,4.4,16.1,()
A、32.4
B、16.4
C、32.16
D、16.16
【答案】:答案:D
解析:偶数项的小数部分和整数部分相同。故选D。
21、一个四边形广场,它的四边长分别是60米、72米、96米、84米,
现在四边上植树,匹角需种树,而且每两棵树的间隔相等,那么,至
少要种多少棵树?()
A、22
B、25
C、26
D、30
【答案】:答案:C
解析:根据四角需种树,且每两棵树的间隔相等可知,间隔距离应为
四边边长的公约数;要使棵树至少,则间隔距离要尽量最大,公约数
最大为12(60、72、96、84的最大公约数)。故棵数=段数=长度♦间
距=(60+72+84+96)+12=26(棵)。故选C。
22、3,2,2,5,17,()
A、24
B、36
C、44
D、56
【答案】:答案:D
解析:依次将相邻两个数中后一个数减去前一个数得一1,0,3,12,
再次作差得1,3,9,构成公比为3的等比数列,即所填数字为9X3
+12+17=56。故选D。
23、2,3,6,18,108,()
A、1944
B、1620
C、1296
I)、1728
【答案】:答案:A
解析:2X3=6,3X6=18,6X18=108,……前两项相乘等于下一项,
则所求项为18X108,尾数为4。故选A。
24、甲、乙和丙三种不同浓度、不同规格的酒精溶液,每瓶重量分别
为3公斤、7公斤和9公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各
一瓶分别混合,得到的酒精浓度分别为50%,50%和60%。如果将三种
酒精合各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度
正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,相当于两瓶
甲、两瓶乙、两瓶丙混合,前两种浓度都是50%,所以只需要加入适量
水使得乙丙混合浓度由60%变为50%即可。设加水x,可将浓度为60%
的酒精溶液溶度变%50%,即,解得x=3.2(公斤)。此时甲乙,甲丙和
乙丙溶液各一瓶混合后浓度必然为50%。若甲、乙和丙各一瓶混合时浓
度仍然为50%,则需加水为(公斤)。故选C。
25、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边
关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且
任意一边不能连续关掉两盏。问总共有多少种方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,
则共有=400种方案。故选C。
26、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收
取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按
8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月
用水总量最多为多少吨?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:总费用一定,要使两个月的用水总量最多,需尽量使用低分水。
先将两个月4元/吨的额度用完,花费4X5X2=40(元);再将6元/吨
的额度用完,花费6X5X2=60(元)。由两个月共交水费108元可知,
还剩108—40—60=8(元),可购买1吨单价为8元/吨的水。该户居■民
这两个月用水总量最多为5X2+5X2+1=21(吨)。故选B。
27、1,2,3,6,12,()
A、16
B、20
C、24
D、36
【答案】:答案:C
解析:分3组二>(1,2),(3,6),(12,24)二>每组后项除以前项二>2、
2、2O故选C。
28、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都
要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。
已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得
分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队
打成平局的。问丙队得几分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4
个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若
最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,
不符合题意,故乙队得7分,即2胜1平。由条件⑶知,丁队恰有两
场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5
分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获
胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1
分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积
分为1分。故选A。
29、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的
一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加
c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参
加b兴趣班的学生有多少个?()
A、7个
B、8个
C、9个
D、10个
【答案】:答案:C
解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e
班人数最少,可知各班人数关系为:27>x>y>6o该班有56名学生,
56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇
数,排除B、代入A选项.,当x=7时,y=8,则x(Y,不符合题意,
排除。故选C。
30、4,12,8,10,()
A、6
B、8
C、9
I)、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1
等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9<,故选C。
31、办公室小李发现写字台上的台历很久没有翻了,就一次翻了7张,
这些台历的日期数加起来恰好是77,请问这一天是几号?()
A、14
B、15
C、16
D、17
【答案】:答案:B
解析:翻过去的7天的日期是公差为1的等差数列,和是77,根据等
差数列求和公式,可知中位数=77+7=11,7天中位数是第4天即第4
天为11号。第七天是11+(7-4)X1=14号,可知今天是15号。故选Bo
32、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1
等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。
33、13X99+135X999+1357X9999的值是()。
A、13507495
B、13574795
C、13704675
I)、13704795
【答案】:答案:D
解析:原式二13X(100-D+135X(1000-D+1357X(10000-
1)=1300+135000+13570000-(13+135+1357)二13704795。故选Do
34、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都
要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。
已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得
分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队
打成平局的。问丙队得几分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4
个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若
最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,
不符合题意,故乙队得7分,即2胜1平。由条件⑶知,丁队恰有两
场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5
分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获
胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1
分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积
分为1分。故选A。
35、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,
则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果
的单价是多少?()
A、5角
B、5角8分
C、5角6分
I)、5角4分
【答案】:答案:C
解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买
成同样数量的桔子,则剩下49X5=245分,若用这些钱买成同样数量
的菠萝,则缺少70X7=490分,所以苹果个数=(245+490)小(70-
49)=35个,苹果总价二49X35+49X5=1960分,每个苹果单价
=1960+35=56分=5角6分。故选C。
36、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,
为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。
故选B。
37、为了国防需要,A基地要运载1480吨的战备物资到1100千米外的
B基地。现在A基地只有一架“运9”大型运输机和一列“货运列车”,
“运9”速度550千米每小时,载重能力为20吨,“货运列车”速度
100千米每小时,运输能力为600吨,那么这批战备物资到达B基地的
最短时间为:
A.53小时
B.54小时
C.55小时
D.56小时
【答案】:答案:B
解析:由题意可知,运输机运输一次往返需要2义(1100+550)=4
小时,单位时间运输5吨;列车运输一次往返需要2义(11004-100)
=22小时,单位时间运输20+吨。要求运输时间最短,那么必然要让
单位时间运输量大的列车尽可能多地运输。货运列车运输能力为600
吨,运输总量为1480吨,因此可推知货运列车共运输两次,即吨。还
剩1480—1200=280吨,需要运输机运输280・20=14次。且第14次
不用计算返回所用的时间,则最短时间为小时。故正确答案为B。
38、小张购买了2个苹果、3根香蕉、4个面包和5块蛋糕,共消费58
元。如果四种商品的单价都是正整数且各不相同,则每块蛋糕的价格
最高可能为多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:设苹果、香蕉、面包、蛋糕的单价分别为x、y、z、w,根捱共
消费58元,得2x+3y+4z+5w=58。代入排除,根据最高,优先从值
最大的选项代入。D选项,当w=8时,可得2x+3y+4z=18,由2x、
4z、18均为偶数,则3y为偶数,即y为偶数且小于6。当y=2,有
2x+4z=12,即x+2z=6,均为正整数且各不相同,若z=l,则x=4,
此时满足题意。故选D。
39、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,
第N项=第N—1项+…+第一项,即所填数字为1+2+3+6+12+24
=48。故选Ao
40、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。
假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该
种日报又有电视机的概率是()。
A、0.09
B、0.25
C、0.36
I)、0.51
【答案】:答案:D
解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是
60%X85%=51%o故选D。
41、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么
共有木材()根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木
材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有
15+21+28+36=100根木材。故选B。
42、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,
则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果
的单价是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此题可理解龙:把苹果全部卖掉,得到钱若干,若用这些钱买
成同样数量的桔子,则剩下49X5=245分,若用这些钱买成同样数量
的菠萝,则缺少70X7=490分,所以苹果个数=(245+490)+(70-
49)=35个,苹果总价二49X35+49X5=1960分,每个苹果单价
=1960+35=56分=5角6分。故选C。
43、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,
53-2=125-2=123。故选A。
44、一个人从家到公司,当他走到路程的一半的时候,速度下降了10%,
问:他走完全程所用时间的前半段和后半段所走的路程比是()。
A、10:9
B、21:19
C、11:9
D、22:18
【答案】:答案:B
解析:设前半程速度为10,则后半程速度为9,路程总长为180,则前
半程用时9,后半程用时10,总耗时19,一半为9.5。因此前半段时
间走过的路程为90+9X(9.5-9)=94.5,后半段时间走过的路程为
9X9.5=85.5o两段路程之比为94.5:85.5=21:19。故选B。
45、5,7,9,(),15,19
A、11
B、12
C、13
D、14
【答案】:答案:C
解析:5=2+3,7=2+5,9=2+7,15=2+13,19=2+17,每一项
是一个连续质数数列与2的和,即所填数字为11+2=13。故选C。
46、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、
-1、1、3,新数列%公差是2的等差数列,则新数列的下一项应为5,
所求项为:-9X5=-45。故选D。
47、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2X7,294=14X21,为两项相加、相乘交替
得到后一项,即所填数字为21+294=315。故选D。
48、13,14,16,21,(),76
A、23
B、35
C、27
D、22
【答案】:答案:B
解析:相连两项相减:1,2,5,();再减一次:1,3,9,27;
()=14;21+14=35。故选B。
49、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么
共有木材()根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木
材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有
15+21+28+36=100根木材。故选B。
50、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小数点之前满足规律:(8-2)X4=24,(24-8)X4=64,(64-
24)X4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,
128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选
Ao
51、1,11,21,31,()
A、39
B、49
C、41
D、51
【答案】:答案:C
解析:题中数列为公差为10的等差数列,故()=31+10=41。故选C。
52、有一个五位数,左边的三位数比右边的两位数的4倍还多4,如果
把右边两位数移到最前面,新的五位数比原来的2倍还多11122,则原
来的五位数是()。
A、18044
B、24059
C、27267
D、30074
【答案】:答案:B
解析:多位数问题考虑用代入排除法解题。代入A选项,180=44X4+4,
但44180W18044X2+11122,不符合题意,排除;代入B选项,
240=59X4+4,59240=24059X2+11122,符合题意,正确。故选B。
53、(1296-18):36的值是()。
A、20
B、35.5
C、19
D、36
【答案】:答案:B
解析:原式可转化%1296+36-18♦36=36-0.5=35.5。故选B。
54、5,12,24,36,52,()
A、58
B、62
C、68
D、72
【答案】:答案:C
解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是从小到
大的质数和,所以下一个是31+37=68。故选C。
55、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1
等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。
56、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最
后一排都只有2人.这个学校二年级有()名学生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只
有B项满足条件。
57、张大伯卖白菜,开始定价是每千克5角钱,一点都卖不出去,后
来每千克降低了几分钱,全部白菜很快卖了出去,一共收入22.26元,
则每千克降低了几分钱?
A、3
B、4
C、6
【)、8
【答案】:答案:D
解析:代入法,只有降8分时收入才能被价格整除。
(2226=2X3X7X53=42X53)o故选D。
58、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲
晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,
则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,
丙才出发,则丙追上甲所需时间是()o
A、110分钟
B、150分钟
C、127分钟
D、128分钟
【答案】:答案:B
解析:设甲、乙、西三辆汽车的速度分别为x、y、Zo由于甲行驶30
分钟的路程,乙需要2小时才能追上,则30x=(y—x)X2X60,化简
得x:y=4:5。又因乙行驶20分钟的路程,丙需要5小时才能追上,
则20y=(z—y)X5X60,化简得y:z=15:16。所以三辆汽车的速度
x:y:z=12:15:16o赋值甲、乙、丙的速度分别为12、15、16,甲
出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已
经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程
12X50=(16-12)Xt,解得t=150。故选B。
59、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最
后一排都只有2人.这个学校二年级有()名学生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只
有B项满足条件。
60、在一次知识竞赛中,甲、乙两单位平均分为85分,甲单位得分比
乙单位高10分,则乙单位得分为()分。
A、88
B、85
C、80
D、75
【答案】:答案:C
解析:根据“甲、乙平均分为85分”,可得总分为85X2=170(分)。
设乙得分为x,那么甲得分为x+10,由题意有x+x+10=170,解得:<二80。
故选Co
61、大年三十彩灯悬,彩灯齐明光灿灿,三三数时能数尽,五五数时
剩一盏,七七数时刚刚好,八八数时还缺三,请你自己算一算,彩灯
至少有多少盏?()
A、21
B、27
C、36
D、42
【答案】:答案:A
解析:由三三数时能数尽、七七数时刚刚好可知,彩灯的数量能同时
被3和7整除,排除B、C。又由五五数时剩一盏可知,彩灯的数量除
以5余1,排除D。故选A。
62、甲和乙两个公司2014年的营业额相同。2015年乙公司受店铺改造
工程影响,营业额比上年下降300万元。而甲公司则引入电商业务,
营业额比上年增长600万元,正好是乙公司2015年营业额的3倍。则
2014年两家公司的营业额之和为多少万元?()
A.900
B.1200
C.1500
D.1800
【答案】:答案:C
解析:设2014年两家公司营业额为x万元,由题意可得万元,则2014
年两家公司营业额为故正确答案为Co
63、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2X7,294=14X21,为两项相加、相乘交替
得到后一项,即所填数字为21+294=315。故选D。
64、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,
8等差,所以后项为4/10=2/5。故选C。
65、-13,19,58,106,165,()
A、189
B、198
C、232
D、237
【答案】:答案:D
解析:二级等差。(即作差2次后,所得相同)。故选D。
66、甲种酒精有4升,乙种酒精有6升,混合成的酒精含酒精62%;如
果两种酒精溶液一样多,混合成的酒精溶液含酒精61%,乙种酒精溶液
含有纯酒精百分之几?()
A、56
B、66
C、58
D、64
【答案】:答案:B
解析:设甲种酒精浓度x%,乙种酒精浓度潭。那么,
4Xx%+6Xy%=(4+6)X62%,x%+y%=2X61%,得x=56,y=66,即乙种酒
精浓度为66%。故选B。
67、某年的10月里有5个星期六,4个星期日,则这年的10月1EI
是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因为有5个星期六,4个星期日,所以10月31
日是星期六。31=4X7+3,所以10月3日也是星期六,故10月1日是
星期四。故选I)。
68、2,3,10,15,26,35,()
A、40
B、45
C、50
D、55
【答案】:答案:C
解析:2=1平方+1,3=2平方T,10=3平方+1,15=4平方-1,26二5平
方+1,35=6平方T,问号=7平方+1,问号二50。故选C。
69、30,42,56,72,()
A、86
B、60
C、90
D、94
【答案】:答案:C
解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一
个应为18,原数列下一项为18+72=90。故选C。
70、学校举行运动会,要求按照红、黄、绿、紫的颜色插彩旗于校门
口,请问第58面旗是什么颜色?()
A、黄
B、红
C、绿
D、紫
【答案】:答案:A
解析:根据“按照红、黄、绿、紫”可知,四个颜色为一个周期,则
58+4=14...2,故第58面旗是14个周期后的第二面,即为黄色。故
选Ao
71、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇数项1、0、-1、(-2)是公差为7的等差数列;偶数项2、3、4
是连续自然数。故选A。
72、1,7,8,57,1)
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=121o故选C。
73、一只天平有7克、2克碳码各一个,如果需要将140克的盐分成
50克、90克各一份,至少要称几次?()
A、六
B、五
C、四
D、三
【答案】:答案:D
解析:第一步,用天平将140g分成两份,每份70g;第二步,将其中
的一份70g,平均分成两份35g;第三步,将磋码分别放在天平的两边,
将35g盐放在天平两边至平衡,则每边为(35+7+2)+2=22g,则跌
码为2g的一边,盐就为20g,将其与第一步剩下的70g盐混合,得到
90g,剩1、的就是50g。即一共称了三次。故选D。
74、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的
盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分
混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5机
则开始倒入试管A中的盐水浓度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含盐量为(30+10)*0.5%=0.2克,即从B中取出的10克
中含盐0.2克,则B的浓度为0.2+10=2%,进而求出B中含盐量为
(20+10)义2%=0.6克,即从A中取出的10克中含盐0.6克,可得A
的浓度为0.6+10=6%,进一步得出A中含盐量为(10+10)X6%=1.2
克,故开始倒入A中的盐水浓度为1.2+10=12%。故选A。
75、2,3,6,15,•)
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是
一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故
选Co
76、团体操表演中,编号为广100的学生按顺序排成一列纵队,编号
为1的学生拿着红、黄、蓝三种颜色的旗帜,以后每隔2个学生有1
人拿红旗,每隔3个学生有1人拿蓝旗,每隔6个学生有1人拿黄旗。
问所有学生中有多少人拿两种颜色以上的旗帜?()
A、13
B、14
C、15
I)、16
【答案】:答案:B
解析:每隔n个人意为每(n+1)个人,则拿红、蓝、黄旗的周期分别为
3、4、7O除编号为1的学生外还剩99人,同时拿红、蓝旗的编号为
12(3和4的公倍数)的倍数,994-12=8.25,有8人;同理,同时拿红、
黄旗的编号为21(3和7的公倍数)的倍数,99・21=4.7,有4人;同时
拿蓝、黄旗的编号为28(4和7的公倍数)的倍数,994-28=3.5,有3
人;同时拿红蓝黄旗的编号为84(3、4和7的公倍数)的倍数,
994-84=1.1,有1人。拿两种颜色以上的旗帜共有8+4+3+1-
2X1=14(人)。故选B。
77、10,9,17,50,()
A、100
B、99
C、199
【)、200
【答案】:答案:C
解析:10X1-1=9;9X2-1=17;17X3-1=50;50X4-l=199o故选C。
78、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]
A、30
B、32
C、34
D、36
【答案】:答案:A
解析:(9-6)X(7+7)=42,(7-3)X(6+4)=40,(8-2)X(3+2)=(30)。故
选Ao
79、2,12,40,112,()
A、224
B、232
C、288
D、296
【答案】:答案:C
解析:原数列可以写成1X2,3X4,5X8,7X16,前一个乘数数列为
1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,
16,是等比数列,下一项是32,所以原数列空缺项为9X32=288。故
选C。
80、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,
8等差,所以后项为4/10=2/5。故选C。
81、在列车平行轨道上,甲、乙两列火车相对开来。甲列火车长236
米,每秒行38米;乙列火车长275米,已知这两列火车错车开过用了7
秒钟,则乙列火车按这个速度通过长为2000米的隧道需要()秒钟。
A、65
B、70
C、75
D、80
【答案】:答案:A
解析:236+275=(38+v)X7,所以v=35,那么275+2000=35t,t=65,
选Ao
82、甲、乙二人现在的年龄之和是一个完全平方数。7年前,他们各自
的年龄都是完全平方数。再过多少年,他们的年龄之和又是完全平方
数?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:设七年前甲、乙的年龄分别为x、y岁,则七年后两人的年龄和
为(x+7)+(y+7)=x+y+14,根据题意x、y、x+y+14均为完全平方数。
100以内的平方数有1、4、9、16、25、36、49、64、81、100,其中
1+49+14=64,1、49、64均为完全平方数,则七年前甲1岁,乙49岁,
现在甲为8岁,乙为56岁,年龄和为64,甲乙年龄和为偶数,下一个
平方数为偶数的是100,需要再过(100-64)・2二18年。故选B。
83、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多
少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把
大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2
与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆
分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使
加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不
如将它换成2个3。因为2X2X2=8,而3X3=9。故拆分出的自然数中,
至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,
其乘积最大,最大值为243X2=486。故选及
84、21,27,40,61,94,148,()
A、239
B、242
C、246
D、252
【答案】:答案:A
解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,
12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为
42+21+54+148=239。故选A。
85、2,3,10,23,()
A、35
B、42
C、68
D、79
【答案】:答案:B
解析:相邻两项后一项减前一项,3-2=1,10-3=7,13-10=13,
42-23=19,是一个公差为6的等差数列,即所填数字为23+19=42。
故选Bo
86、4,10,34,130,()
A、184
B、258
C、514
D、1026
【答案】:答案:C
解析:解法一:二级等差数列变式。解法二:从第三项开始,第三项
等于第二项的5倍减去第一项的4倍,即34=5X10-4X4,130=5X34-
4X10,(514)=5X130-4X34o故选C。
87、25与一个三位数相乘个位是0,与这个三位数相加有且只有一次
进位,像这样的三位数总共有多少个?()
A、48
B、126
C、174
D、180
【答案】:答案:C
解析:因为25与一个三位数相乘个位是0,所以这个三位数个位上的
数是0、2、4、6、8o又因为与这个三位数相加有且只有一次进位,所
以当个位是0、2、4时,十位必须是8或9,百位是1-8八个数都可以,
这种情况有48(8乘2乘3等于48)个数满足条件;当个位是6或8时,
十位可以是0、1、2、3、4、5、6七个数,百位是1-9九个数,这种
情况有126(9乘7乘2等于126)个数满足条件;终上所述一共有
174(48+126=174)个,即:像这样的三位数总共有174个。故选C。
88、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小数点之前满足规律:(8-2)X4=24,(24-8)X4=64,(64-
24)X4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,
128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选
Ao
89、-3,-2,5,24,61,()
A、122
B、156
C、240
D、348
【答案】:答案:A
解析:相邻两项逐差:因此,未知项=61+61=122。故选A。
90、1,2,6,30,210,()
A、1890
B、2310
C、2520
D、2730
【答案】:答案:B
解析:2+1=2,64-2=3,30+6=5,2104-30=7,相邻两项后一项
除以前一项的商构成连续的质数列,即所填数字为210X11=2310。故
选B。
91、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2X3=6,3X6=18,6X18=108,……前两项相乘等于下一项,
则所求项为18X108,尾数为4。故选A。
92、祖父今年65岁,3个孙子的年龄分别是15岁、13岁与9岁,问
多少年后3个孙子的年龄之和等于祖父的年龄?()
A、23
B、14
C、25
D、16
【答案】:答案:B
解析:设n年后3个孙子的年龄之和等于祖父的年龄,可列方程:65
+n=(15+n)+(13+n)+(9+n),解得n=14。故选B°
93、2/3,1/2,3/7,7/18,()
A、4/11
B、5/12
C、7/15
D、3/16
【答案】:答案:A
解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,
接下来是8.分母是6、10、14、18,接下来是22。故选A。
94、90,85,81,78,()
A、75
B、74
C、76
D、73
【答案】:答案:C
解析:后项减去前项,可得-5、-4、-3、(-2),这是一个公差为1的
等差数列,所以下一项为78-2=76。故选C。
95、祖父今年65岁,3个孙子的年龄分别是15岁、13岁与9岁,问
多少年后3个孙子的年龄之和等于祖父的年龄?()
A、23
B、14
C、25
D、16
【答案】:答案:B
解析:设n年后3个孙子的年龄之和等于祖父的年龄,可列方程:65
+n=(15+n)+(13+n)+(9+n),解得n=14。故选B。
96、-2,1,31,70,112,()
A、154
B、155
C、256
D、280
【答案】:答案:B
解析:依次将相邻两项做差得3、30、39、42,再次做差得27、9、3,
是公比为1/3的等比数列,即所填数字为(3+3)+42+112=155。故
选Bo
97、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的
一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加
c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参
加b兴趣班的学生有多少个?()
A、7个
B、8个
C、9个
D、10个
【答案】:答案:C
解析:设b班人数%x,c、d班的人数均为y,由b班人数第二多,e
班人数最少,可知各班人数关系为:27>x>y>6o该班有56名学生,
56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇
数,排除B、Do代入A选项,当x=7时,y=8,则x〈Y,不符合题意,
排除。故选C。
98、1,1,3,7,17,41,()
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三项二第二项X2+第一项,99=41X2+17。故选B。
99、一件商品相继两次分别按折扣率为10%和20%进行折扣,已知折扣
后的售价为540元,那么折扣前的售价为()。
A、600元
B、680元
C、720元
D、750元
【答案】:答案:D
解析:设原售价为x元,利用“折扣后售价为540元”得x(l—10阶(1
一20%)=540。解得x=750。故选D。
100、6,6,12,36,()
A、124
B、140
C、144
D、164
【答案】:答案:C
解析:两两相除。6/6=1,6/12=1/2,12/36=1/3,下个数为
36/()=1/4。故选C。
10k商店购入一百多件A款服装,其单件进价为整数元,总进价为1
万元,已知单件B款服装的定价为其进价的1.6倍,其进价为A款服
装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定
价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A
款服装?()
A、13
B、15
C、17
【)、19
【答案】:答案:C
解析:推出A款服装有125件,进价为80元,B款服装进价为
80*0.75=60(元),B款服装定价为60X1.6=96(元),利润为96-
60=36(元),A款服装利润为36X2=72(元),所以A款服装售价为
80+72=152(元)。销售数量至少为2500・152=16.4,取整为17件。故
选C。
102、某班一次数学测试,全班平均91分,其中男生平均88分,女生
平均93分,则女生人数是男生人数的多少倍?()
A、0.5
B、1
C、1.5
D、2
【答案】:答案:C
解析:设男生、女生人数分别为x、y,可得88x+93y=91(x+y),解得,
即女生是男生的1.5倍。故选C。
103、12,23,35,47,511,()
A、613
B、612
C、611
D、610
【答案】:答案:A
解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成等差数
列,其余数字“2,3,5,7,11,(13)”构成质数数列。因此,未知
项为613O故选A。
104、1,6,36,216,()
A、1296
B、1297
C、1299
D、1230
【答案】:答案:A
解析:数列是公比%6的等比数列,则所求项为216X6=1296(也可用
尾数法,尾数为6)。故选A。
105、1,1,3,7,17,41,()
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三项二第二项X2+第一项,99=41X2+17。故选B。
106、某农场有36台收割机,要收割完所有的麦子需要14天时间。现
收割了7天后增加4台收割机,并通过技术改
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年施工流程优化合同
- 2026年星际公司法务咨询合同
- 2024年北京大兴区高一(下)期末物理试题和答案
- 2026年厂房租赁合同
- 幼儿园安全隐患专项整治检查表
- 2025年连平县上坪镇人民政府公开招聘应急救援中队应急队员备考题库及参考答案详解1套
- 违规吃喝专项整治个人自查报告
- 2024年陕西陕煤澄合矿业有限公司招聘考试真题
- 2025年沭阳辅警招聘真题及答案
- 易瑞生物深度研究报告:国产食品安全快检龙头扰动出清出海加速
- 郑州市2025届高中毕业年级第一次质量预测数学试题及答案解析
- 四川省德阳市旌阳区2024-2025学年七年级上学期语文期末检测试卷(含答案)
- 2025-2026学年苏科版(新教材)小学信息科技三年级上册期末综合测试卷及答案
- 初中校长述职述廉报告
- 铁路基层站段大学生的培养及使用
- 牛角包课件教学课件
- 雨课堂学堂云在线《文献计量综述法及citespace的应用(山大 )》单元测试考核答案
- 2025年钻井队安全工作调研报告
- 学霸养成之第一性原理-2025-2026学年高二上学期学习方法指导班会
- 投资策略分析报告:波动趋势量化剥离策略
- 2025国家外汇管理局中央外汇业务中心社会在职人员招聘3人考试笔试备考题库及答案解析
评论
0/150
提交评论