重庆市2026届高一上数学期末学业质量监测试题含解析_第1页
重庆市2026届高一上数学期末学业质量监测试题含解析_第2页
重庆市2026届高一上数学期末学业质量监测试题含解析_第3页
重庆市2026届高一上数学期末学业质量监测试题含解析_第4页
重庆市2026届高一上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市2026届高一上数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数(且)的图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.2.设函数,若,则A. B.C. D.3.某时钟的秒针端点A到中心点O的距离为5cm,秒针绕点O匀速旋转,当时间:t=0时,点A与钟面上标12的点B重合,当t∈[0,60],A,B两点间的距离为d(单位:A.5sintC.5sinπt4.已知函数,函数有四个不同的的零点,,,,且,则()A.a的取值范围是(0,) B.的取值范围是(0,1)C. D.5.已知某种树木的高度(单位:米)与生长年限t(单位:年,)满足如下的逻辑斯谛(Logistic)增长模型:,其中为自然对数的底数,设该树栽下的时刻为0,则该种树木生长至3米高时,大约经过的时间为()A.2年 B.3年C.4年 D.5年6.函数f(x)=lnx+3x-4的零点所在的区间为()A. B.C. D.7.如图是一个体积为10的空间几何体的三视图,则图中的值为()A2 B.3C.4 D.58.为了得到函数的图象,可以将函数的图象A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位9.已知三棱锥的三条棱,,长分别是3、4、5,三条棱,,两两垂直,且该棱锥4个顶点都在同一球面上,则这个球的表面积是A B.C. D.都不对10.为了节约水资源,某地区对居民用水实行“阶梯水价”制度:将居民家庭全年用水量(取整数)划分为三档,水价分档递增,其标准如下:阶梯居民家庭全年用水量(立方米)水价(元/立方米)其中水费(元/立方米)水资源费(元/立方米)污水处理费(元/立方米)第一阶梯0-180(含)52.071.571.36第二阶梯181-260(含)74.07第三阶梯260以上96.07如该地区某户家庭全年用水量为300立方米,则其应缴纳的全年综合水费(包括水费、水资源费及污水处理费)合计为元.若该地区某户家庭缴纳的全年综合水费合计为1180元,则此户家庭全年用水量为()A.170立方米 B.200立方米C.220立方米 D.236立方米二、填空题:本大题共6小题,每小题5分,共30分。11.已知f(x)是定义在R上的奇函数且以6为周期,若f(2)=0,则f(x)在区间(0,10)内至少有________零点.12.若,则的定义域为____________.13.已知函数在一个周期内的图象如图所示,图中,,则___________.14.已知tanα=3,则sin15.写出一个在区间上单调递增幂函数:______16.已知奇函数f(x),当x>0,fx=x2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)求的最小正周期;(2)当时,求:(ⅰ)的单调递减区间;(ⅱ)的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量的值.18.已知.(1)求的值(2)求的值.19.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界,已知函数.(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;(2)若函数在上是以4为上界的有界函数,求实数的取值范围.20.定义在D上的函数,如果满足:存在常数,对任意,都有成立,则称是D上的有界函数,其中M称为函数的上界.(1)证明:在上有界函数;(2)若函数在上是以3为上界的有界函数,求实数a的取值范围.21.已知函数的一段图像如图所示.(1)求此函数的解析式;(2)求此函数在上的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误2、A【解析】由的函数性质,及对四个选项进行判断【详解】因为,所以函数为偶函数,且在区间上单调递增,在区间上单调递减,又因为,所以,即,故选择A【点睛】本题考查幂函数的单调性和奇偶性,要求熟记几种类型的幂函数性质3、D【解析】由题知圆心角为tπ30,过O作AB的垂线,通过计算可得d【详解】由题知,圆心角为tπ30,过O作AB的垂线,则故选:D4、D【解析】将问题转化为与有四个不同的交点,应用数形结合思想判断各交点横坐标的范围及数量关系,即可判断各选项的正误.【详解】有四个不同的零点、、、,即有四个不同的解的图象如下图示,由图知:,所以,即的取值范围是(0,+∞)由二次函数的对称性得:,因为,即,故故选:D【点睛】关键点点睛:将零点问题转化为函数交点问题,应用数形结合判断交点横坐标的范围或数量关系.第II卷5、C【解析】根据题意,列方程,即可求解.【详解】由题意可得,令,即,解得:t=4.故选:C6、B【解析】根据函数零点的判定定理可得函数的零点所在的区间【详解】解:函数在其定义域上单调递增,(2),(1),(2)(1)根据函数零点的判定定理可得函数的零点所在的区间是,故选【点睛】本题考查求函数的值及函数零点的判定定理,属于基础题7、A【解析】由已知可得:该几何体是一个四棱锥和四棱柱的组合体,其中棱柱的体积为:3×2×1=6,棱锥的体积为:×3×2×x=2x则组合体的体积V=6+2x=10,解得:x=2,故选A点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.8、D【解析】因为,所以将函数的图象向左平移个单位,选D.考点:三角函数图像变换【易错点睛】对y=Asin(ωx+φ)进行图象变换时应注意以下两点:(1)平移变换时,x变为x±a(a>0),变换后的函数解析式为y=Asin[ω(x±a)+φ];(2)伸缩变换时,x变为(横坐标变为原来的k倍),变换后的函数解析式为y=Asin(x+φ)9、B【解析】长方体的一个顶点上的三条棱分别为,且它的八个顶点都在同一个球面上,则长方体的对角线就是球的直径,长方体的对角线为球的半径为则这个球的表面积为故选点睛:本题考查的是球的体积和表面积以及球内接多面体的知识点.由题意长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积即可10、C【解析】根据用户缴纳的金额判定全年用水量少于260,利用第二档的收费方式计算即可.【详解】若该用户全年用水量为260,则应缴纳元,所以该户家庭的全年用水量少于260,设该户家庭全年用水量为x,则应缴纳元,解得.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】直接利用f(x)的奇偶性和周期性求解.【详解】因为f(x)是定义在R上奇函数且以6为周期,所以f(x)=-f即f-x所以f(x)的图象关于3,0对称,且f3则f9又f(0)=0,f(6)=0,又f(2)=0,所以f(8)=0,f(-2)=0,f(4)=0,所以f(x)在区间(0,10)内至少有6个零点.故答案为:6个零点12、【解析】使表达式有意义,解不等式组即可.【详解】由题,解得,即,故答案为:.【点晴】此题考函数定义域的求法,属于简单题.13、【解析】根据图象和已知信息求出的解析式,代值计算可得的值.【详解】由已知可得,在处附近单调递增,且,故,又因为点是函数在轴右侧的第一个对称中心,所以,,可得,故,因此,.故答案为:.14、3【解析】由题意利用同角三角函数的基本关系,求得要求式子的值【详解】∵tanα=3,∴sinα•cosα=sin故答案为310【点睛】本题主要考查同角三角函数的基本关系,属于基础题15、x(答案不唯一)【解析】由幂函数的性质求解即可【详解】因为幂函数在区间上单调递增,所以幂函数可以是,故答案为:(答案不唯一)16、-10【解析】根据函数奇偶性把求f-2的值,转化成求f2【详解】由f(x)为奇函数,可知f-x=-f又当x>0,fx=故f故答案为:-10三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(ⅰ)(ⅱ)的最大值为,此时;的最小值为,此时【解析】(1)先用三角恒等变换化简得到,利用最小正周期公式求出答案;(2)在第一问的基础上,整体法求解函数单调区间,根据单调区间求解最值,及相应的自变量的值.【小问1详解】,,的最小正周期为【小问2详解】(ⅰ),,,的单调递减区间是,且由,得,所以函数的单调递减区间为(ⅱ)由(1)知,在上单调递减,在上单调递增.且,,,所以,当时,取最大值为;当时,取最小值为18、(1)(2)【解析】(1)由两边平方可得,利用同角关系;(2)由(1)可知从而.【详解】(1)∵.∴,即,(2)由(1)知<0,又∴∴【点睛】本题考查三角函数化简求值,涉及同角三角函数基本关系和整体代入的思想,属于中档题19、(1)值域为,不是有界函数;(2)【解析】(1)把代入函数的表达式,得出函数的单调区间,结合有界函数的定义进行判断;(2)由题意知,对恒成立,令,对恒成立,设,,求出单调区间,得到函数的最值,从而求出的值.试题解析:(1)当时,,令,∵,∴,;∵在上单调递增,∴,即在上的值域为,故不存在常数,使成立.∴函数在上不是有界函数(2)由题意知,对恒成立,即:,令,∵,∴.∴对恒成立,∴,设,,由,由于在上递增,在上递减,在上的最大值为,在上的最小值为,∴实数的取值范围为20、(1)证明见解析(2)【解析】(1)根据,利用求解单调性求解;(2)根据在上是以3为上界的有界函数,令,则,转化,在时恒成立求解.【小问1详解】解:,则在上是严格增函数,故,即,故,故是有界函数;【小问2详解】因为在上是以3为上界的有界函数,所以在上恒成立,令,则,所以在时恒成立,所以,在时恒成立,函数在上严格递减,所以;函数在上严格递增,所以.所以实数a的取值范围是.21、(1);(2)和.【解析】(1)根据三角函数的图象求出A,ω,φ,即可确定函数的解析式;(2)根据函数的表达式,即可求函数f(x)的单调递增区间;【详解】(1)由函数的图象可知A,,∴周期T=16,∵T16,∴ω,∴y=2sin(x+φ)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论