西藏自治区拉萨市北京实验中学2026届高一数学第一学期期末调研试题含解析_第1页
西藏自治区拉萨市北京实验中学2026届高一数学第一学期期末调研试题含解析_第2页
西藏自治区拉萨市北京实验中学2026届高一数学第一学期期末调研试题含解析_第3页
西藏自治区拉萨市北京实验中学2026届高一数学第一学期期末调研试题含解析_第4页
西藏自治区拉萨市北京实验中学2026届高一数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西藏自治区拉萨市北京实验中学2026届高一数学第一学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在的区间为()A.(,1) B.(1,2)C. D.2.在空间四边形ABCD中,AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是()A平面ABC⊥平面BED B.平面ABC⊥平面ABDC.平面ABC⊥平面ADC D.平面ABD⊥平面BDC3.若用二分法逐次计算函数在区间内的一个零点附近的函数值,所得数据如下:0.510.750.6250.562510.4620.155则方程的一个近似根(精度为0.1)为()A.0.56 B.0.57C.0.65 D.0.84.直线l:与圆C:的位置关系是A.相切 B.相离C.相交 D.不确定5.函数单调递增区间为A. B.C. D.6.若,且,则角的终边位于A.第一象限 B.第二象限C.第三象限 D.第四象限7.若关于的方程有且仅有一个实根,则实数的值为()A3或-1 B.3C.3或-2 D.-18.平面与平面平行的条件可以是()A.内有无穷多条直线与平行 B.直线,C.直线,直线,且, D.内的任何直线都与平行9.已知幂函数在上单调递减,则m的值为()A.0 B.1C.0或1 D.10.函数与g(x)=-x+a的图象大致是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数,若函数满足对,都有,则实数的取值范围是_______.12.将函数y=sin2x+π4的图象上各点的纵坐标不变,横坐标伸长到原来的13.已知函数,若,则___________.14.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.15.已知函数对任意不相等的实数,,都有,则的取值范围为______.16.函数,的图象恒过定点P,则P点的坐标是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数()在处取最大值(Ⅰ)求的值;(Ⅱ)在中,分别是角的对边.已知,,,求的值18.(1)已知,化简:;(2)已知,证明:19.设为奇函数,为常数.(1)求的值;(2)证明:在内单调递增;(3)若对于上的每一个的值,不等式恒成立,求实数的取值范围.20.已知函数为上奇函数(1)求实数的值;(2)若不等式对任意恒成立,求实数的最小值21.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】为定义域内的单调递增函数,计算选项中各个变量的函数值,判断在正负,即可求出零点所在区间.【详解】解:在上为单调递增函数,又,所以的零点所在的区间为.故选:D.2、A【解析】利用面面垂直的判定定理逐一判断即可【详解】连接DE,BE.因为E为对角线AC的中点,且AB=BC,AD=CD,所以DE⊥AC,BE⊥AC因为DE∩BE=E,所以AC⊥面BDEAC⊂面ABC,所以平面ABC⊥平面BED,故选A【点睛】本题主要考查了面面垂直的判定,要求熟练掌握面面垂直的判定定理3、B【解析】利用零点存在性定理和精确度要求即可得解.【详解】由表格知在区间两端点处的函数值符号相反,且区间长度不超过0.1,符合精度要求,因此,近似值可取此区间上任一数故选:B4、C【解析】利用点到直线的距离公式求出直线和圆的距离,即可作出判断.【详解】圆C:的圆心坐标为:,则圆心到直线的距离,所以圆心在直线l上,故直线与圆相交故选C【点睛】本题考查的知识要点:直线与圆的位置关系的应用,点到直线的距离公式的应用5、A【解析】,所以.故选A6、B【解析】∵sinα>0,则角α的终边位于一二象限或y轴的非负半轴,∵由tanα<0,∴角α的终边位于二四象限,∴角α的终边位于第二象限故选择B7、B【解析】令,根据定义,可得的奇偶性,根据题意,可得,可求得值,分析讨论,即可得答案.【详解】令,则,所以为偶函数,图象关于y轴对称,因为原方程仅有一个实根,所以有且仅有一个根,即,所以,解得或-1,当时,,,,不满足仅有一个实数根,故舍去,当时,,当时,由复合函数的单调性知是增函数,所以,当时,,所以,所以仅有,满足题意,综上:.故选:B8、D【解析】由题意利用平面与平面平行的判定和性质,逐一判断各个选项是否正确,从而得出结论【详解】解:当内有无穷多条直线与平行时,与可能平行,也可能相交,故A错误当直线,时,与可能平行也可能相交,故B错误当直线,直线,且,,如果,都平行,的交线时满足条件,但是与相交,故C错误当内的任何直线都与平行时,由两个平面平行的定义可得,这两个平面平行,故D正确;故选:D9、A【解析】根据幂函数得的定义,求得或,结合幂函数的性质,即可求解.【详解】由题意,幂函数,可得,解得或,当时,可得,可得在上单调递减,符合题意;当时,可得,可得在上无单调性,不符合题意,综上可得,实数的值为.故选:A.10、A【解析】因为直线是递减,所以可以排除选项,又因为函数单调递增时,,所以当时,,排除选项B,此时两函数的图象大致为选项,故选A.【方法点晴】本题通过对多个图象的选择考查函数的指数函数、一次函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】首先根据题意可得出函数在上单调递增;然后根据分段函数单调性的判断方法,同时结合二次函数的单调性即可求出答案.【详解】因为函数满足对,都有,所以函数在上单调递增.当时,,此时满足在上单调递增,且;当时,,其对称轴为,当时,上单调递增,所以要满足题意,需,即;当时,在上单调递增,所以要满足题意,需,即;当时,单调递增,且满足,所以满足题意.综上知,实数的取值范围是.故答案为:.12、f【解析】利用三角函数图象的平移和伸缩变换即可得正确答案.【详解】函数y=sin2x+π得到y=sin再向右平移π4个单位,得到y=故最终所得到的函数解析式为:fx故答案为:fx13、0【解析】由,即可求出结果.【详解】由知,则,又因为,所以.故答案:0.14、【解析】正方体体积8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π故答案为:12π点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.15、【解析】首先根据题意得到在上为减函数,从而得到,再解不等式组即可.【详解】由题知:对任意不相等的实数,,都有,所以在上为减函数,故,解得:.故答案为:【点睛】本题主要考查分段函数的单调性,同时考查了对数函数的单调性,属于简单题.16、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意得,根据在处取最大值得,即,故.(Ⅱ)由(Ⅰ)可得,故,所以,由正弦定理得,所以,故可得试题解析:(Ⅰ),因为在时取最大值,所以,故又,所以(Ⅱ)由(Ⅰ)知因为,所以,又为的内角,所以由正弦定理得,由题意得为锐角,所以.所以18、(1)0;(2)证明见解析.【解析】(1)由给定条件确定出,值的正负及大小,再利用二倍角公式化简计算即得;(2)由给定角求出,利用和角公式变形,再展开所证等式的左边代入计算即得.【详解】(1)因,则,则原式;(2)因,则,即,亦即,则,所以原等式成立.19、(1)(2)证明见解析(3)【解析】(1)根据得到,验证得到答案.(2)证明的单调性,再根据复合函数的单调性得到答案.(3)确定单调递增,再计算最小值得到答案.【小问1详解】,,,即,故,,当时,,不成立,舍去;当时,,验证满足.综上所述:.【小问2详解】,函数定义域为,考虑,设,则,,,故,函数单调递减.在上单调递减,根据复合函数单调性知在内单调递增.【小问3详解】,即,为增函数.故在单调递增,故.故.20、(1);(2)【解析】(1)由奇函数得到,再由多项式相等可得;(2)由是奇函数和已知得到,再利用是上的单调增函数得到对任意恒成立.利用参数分离得对任意恒成立,再求,上最大值可得答案【详解】(1)因为函数为上的奇函数,所以对任意成立,即对任意成立,所以,所以(2)由得,因为函数为上的奇函数,所以由(1)得,是上的单调增函数,故对任意恒成立所以对任意恒成立因为,令,由,得,即所以的最大值为,故,即的最小值为【点睛】本题考查了函数的性质,不等式恒成立的问题,第二问的关键点是根据函数的为单调递增函数,得到,再利用参数分离后求的最大值,考查了学生分析问题、解决问题的能力.21、(1);(2).【解析】(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为.试题解析:(1)依题意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论