版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省林州市林滤中学高一数学第一学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集为,则()A. B.C. D.2.若定义在R上的偶函数满足,且当时,f(x)=x,则函数y=f(x)-的零点个数是A.6个 B.4个C.3个 D.2个3.已知集合,区间,则=()A. B.C. D.4.某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.5.的零点所在的一个区间为()A. B.C. D.6.下列函数中在定义域上为减函数的是()A. B.C. D.7.若集合,则集合的所有子集个数是A.1 B.2C.3 D.48.下列函数中,既是奇函数,又在区间上单调递增的是()A. B.C D.9.三个数的大小关系为()A. B.C. D.10.已知点是第三象限的点,则的终边位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的圆心角为,其弧长是其半径的2倍,则__________12.若两平行直线2x+y-4=0与y=-2x-k-2的距离不大于,则k的取值范围是____13.设函数,若实数满足,且,则的取值范围是_______________________14.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积为_____________15.在中,,BC边上的高等于,则______________16.函数的单调递增区间为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数(1)若不等式的解集是,求不等式的解集;(2)当时,在上恒成立,求实数的取值范围18.如图所示四棱锥中,底面,四边形中,,,,求四棱锥的体积;求证:平面;在棱上是否存在点异于点,使得平面,若存在,求的值;若不存在,说明理由19.已知函数,且(1)证明函数在上是增函数(2)求函数在区间上的最大值和最小值20.如图所示,已知平面平面,平面平面,,求证:平面.21.某旅游风景区发行的纪念章即将投放市场,根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下:上市时间x天2620市场价y元10278120(1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③;(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格;(3)利用你选取的函数,若存在,使得不等式成立,求实数k的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由不等式的解集为,得到是方程的两个根,由根与系数的关系求出,即可得到答案【详解】由题意,可得不等式的解集为,所以是方程的两个根,所以可得,,解得,,所以,故选:A2、B【解析】因为偶函数满足,所以的周期为2,当时,,所以当时,,函数的零点等价于函数与的交点个数,在同一坐标系中,画出的图象与的图象,如上图所示,显然的图象与的图象有4个交点.选B.点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,是中档题.根据函数零点和方程的关系进行转化是解答本题的关键3、D【解析】利用交集的运算律求【详解】∵,,∴.故选:D.4、A【解析】由题可得该几何体为正方体的一半,截去了一个三棱锥,即得.【详解】由三视图可知该几何体为正方体的一半,截去了一个三棱锥,如图,则其体积为.故选:A.5、A【解析】根据零点存在性定理分析判断即可【详解】因为在上单调递增,所以函数至多有一个零点,因为,,所以,所以的零点所在的一个区间为,故选:A6、C【解析】根据基本初等函数的单调性逐一判断各个选项即可得出答案.【详解】对于A,由函数,定义域为,且在上递增,故A不符题意;对于B,由函数,定义域为,且在上递增,故B不符题意;对于C,由函数,定义域为,且在上递减,故C符合题意;对于D,由函数,定义域为,且在上递增,故D不符题意.故选:C7、D【解析】根据题意,集合的所有子集个数,选8、你9、A【解析】利用指数对数函数的性质可以判定,从而做出判定.【详解】因为指数函数是单调增函数,是单调减函数,对数函数是单调减函数,所以,所以,故选:A10、D【解析】根据三角函数在各象限的符号即可求出【详解】因为点是第三象限的点,所以,故的终边位于第四象限故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、-1【解析】由已知得,所以则,故答案.12、【解析】利用平行线之间的距离及两直线不重合列出不等式,求解即可【详解】y=﹣2x﹣k﹣2的一般式方程为2x+y+k+2=0,则两平行直线的距离d得,|k+6|≤5,解得﹣11≤k≤﹣1,当k+2=﹣4,即k=﹣6,此时两直线重合,所以k的取值范围是故答案为【点睛】本题考查了两平行直线间的距离,考查两直线平行的条件,考查计算能力,属于基础题.13、【解析】结合图象确定a,b,c的关系,由此可得,再利用基本不等式求其最值.【详解】解:因为函数,若实数a,b,c满足,且,;如图:,且;令;因为;,当且仅当时取等号;,;故答案为:14、【解析】正方体的对角线等于球的直径.求得正方体的对角线,则球的表面积为考点:球的表面积点评:若长方体的长、宽和高分别为a、b、c,则球的直径等于长方体的对角线15、.【解析】设边上的高为,则,求出,.再利用余弦定理求出.【详解】设边上的高为,则,所以,由余弦定理,知故答案为【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平,属于基础题.16、【解析】首先将函数拆分成内外层函数,根据复合函数单调性的判断方法求解.【详解】函数分成内外层函数,是减函数,根据“同增异减”的判断方法可知求函数的单调递增区间,需求内层函数的减区间,函数的对称轴是,的减区间是,所以函数的单调递增区间为.故答案为:【点睛】本题考查复合函数的单调性,意在考查基本的判断方法,属于基础题型,判断复合函数的单调性根据“同增异减”的方法判断,当内外层单调性一致时为增函数,当内外层函数单调性不一致时为减函数,有时还需注意定义域.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)由题意,是方程的解,利用韦达定理求解,代入,结合一元二次函数、方程、不等式的关系求解即可;(2),代入转化不等式为,换元法求解的最大值即可【小问1详解】因为不等式的解集是,所以是方程的解由韦达定理解得故不等式为,即解得或故不等式得其解集为或【小问2详解】当时,在上恒成立,所以令,则令,则,由于均为的减函数故在上为减函数所以当时,取最大值,且最大值为3所以所以所以实数的取值范围为.18、(1)4;(2)见解析;(3)不存在.【解析】利用四边形是直角梯形,求出,结合底面,利用棱锥的体积公式求解即可求;先证明,,结合,利用线面垂直的判定定理可得平面;用反证法证明,假设存在点异于点使得平面证明平面平面,与平面与平面相交相矛盾,从而可得结论【详解】显然四边形ABCD是直角梯形,又底面平面ABCD,平面ABCD,在直角梯形ABCD中,,,,即又,平面;不存在,下面用反证法进行证明假设存在点异于点使得平面PAD,且平面PAD,平面PAD,平面PAD又,平面平面PAD而平面PBC与平面PAD相交,得出矛盾【点睛】本题考查直线与平面垂直的判定,棱锥的体积,平面与平面平行的判定定理,考查空间想象能力,逻辑推理能力.证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.19、(1)证明见解析;(2)的最大值为,最小值为.【解析】(1)根据求出,求得,再利用函数单调性的定义,即可证得结论;(2)根据在上的单调性,求在上的最值即可.【详解】解:(1)因为,可得,解得,所以,任取,则,因为,所以,可得,即且,所以,即,所以在上是增函数;(2)由(1)知,在上是增函数,同理,任取时,,其中,故,即且,故,即,所以在上是减函数,故在上是减函数,在上是增函数,又,,所以的最大值为,最小值为.【点睛】方法点睛:利用定义证明函数单调性方法:(1)取值:设是该区间内的任意两个值,且;(2)作差变形:即作差,即作差,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差的符号;(4)下结论:判断,根据定义作出结论.即取值——作差——变形——定号——下结论.20、见解析【解析】平面内取一点,作于点,于点,可证出平面,从而,同理可证,故平面.【详解】证明:如图所示,在平面内取一点,作于点,于点.因为平面平面,且交线为,所以平面.因为平面,所以同理可证.又,都在平面内,且,所以平面【点睛】本题主要考查了两个平面垂直的性质,线面垂直的性质,判定,属于中档题.21、(1)选择,理由见解析,(2)上市天数10天,最低价格70元,(3)【解析】(1)根据函数的单调性选取即可.(2)把点代入中求解参数,再根据二次函数的最值求解即可.(3)参变分离后再求解最值即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年陕西国际商贸学院单招职业适应性测试模拟测试卷附答案解析
- 2025年11月广东深圳市大鹏新区科技和工业信息化局招聘编外人员1人备考题库及答案解析(夺冠)
- 2026年上海中侨职业技术大学辅导员招聘备考题库附答案
- 2025年信阳职业技术学院单招职业适应性考试模拟测试卷附答案解析
- 2025年柳州铁道职业技术学院单招职业适应性考试题库附答案解析
- 2024年四川职业技术学院单招职业倾向性测试模拟测试卷附答案解析
- 2024年四川文轩职业学院单招职业技能测试题库附答案解析
- 2023年江西洪州职业学院单招职业适应性测试题库附答案解析
- 2025年江西外语外贸职业学院单招职业技能考试模拟测试卷附答案解析
- 2023年潍坊护理职业学院单招职业适应性测试题库附答案解析
- 2025-2026学年湘美版小学美术四年级(上册)期末测试卷附答案(4套)
- 2025年新材料科技创新平台建设可行性研究报告
- 2025年1月黑龙江省普通高中学业水平合格性考试物理试卷(含答案)
- 知识点及2025秋期末测试卷(附答案)-苏教版(新教材)小学科学小学科学二年级上册
- 《城市轨道交通车站机电设备运用》课件 项目三:站台门系统
- 企业税务规划合规审查手册
- 附件扭转诊治中国专家共识(2024年版)解读
- 全员品质意识培训
- 货物代理报关合同范本
- 2025甘肃酒泉市公安局招聘留置看护岗位警务辅助人员30人(第三批)考试笔试备考题库及答案解析
- 2025高中历史时间轴与大事年表
评论
0/150
提交评论