山西省长治市二中2026届数学高二上期末调研模拟试题含解析_第1页
山西省长治市二中2026届数学高二上期末调研模拟试题含解析_第2页
山西省长治市二中2026届数学高二上期末调研模拟试题含解析_第3页
山西省长治市二中2026届数学高二上期末调研模拟试题含解析_第4页
山西省长治市二中2026届数学高二上期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省长治市二中2026届数学高二上期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为,在抛物线上有一点,满足,则的中点到轴的距离为()A. B.C. D.2.若数列的通项公式为,则该数列的第5项为()A. B.C. D.3.函数的图像在点处的切线方程为()A. B.C. D.4.已知函数,则()A. B.C. D.5.已知椭圆的左、右焦点分别为、,点A是椭圆短轴的一个顶点,且,则椭圆的离心率()A. B.C. D.6.已知是虚数单位,若,则复数z的虚部为()A.3 B.-3iC.-3 D.3i7.为迎接第24届冬季奥运会,某校安排甲、乙、丙、丁、戊共5名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人,每人只能安排到1个项目,则所有排法的总数为()A.60 B.120C.150 D.2408.已知A(3,2),点F为抛物线的焦点,点P在抛物线上移动,为使取得最小值,则点P的坐标为()A.(0,0) B.(2,2)C. D.9.若直线与互相垂直,则实数a的值为()A.-3 B.C. D.310.已知直线l,m,平面α,β,,,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.直线在轴上的截距为()A.3 B.C. D.12.若圆与圆有且仅有一条公切线,则()A.-23 B.-3C.-12 D.-13二、填空题:本题共4小题,每小题5分,共20分。13.正方体的棱长为2,点为底面正方形的中心,点在侧面正方形的边界及其内部运动,若,则点的轨迹的长度为______14.圆锥的高为1,底面半径为,则过圆锥顶点的截面面积的最大值为____________15.从编号为01,02,…,60的60个产品中用系统抽样的方法抽取一个样本,已知样本中的前两个编号分别为02,08(编号按从小到大的顺序排列),则样本中最大的编号是_________16.已知数列{}的前n项和为,则该数列的通项公式__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得.(1)求家庭的月储蓄y对月收入x的线性回归方程;(2)判断变量x与y之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程中,,,其中,为样本平均值.18.(12分)已知椭圆,离心率分别为左右焦点,椭圆上一点满足,且的面积为1.(1)求椭圆的标准方程;(2)过点作斜率为的直线交椭圆于两点.过点且平行于的直线交椭圆于点,证明:为定值.19.(12分)在直角坐标系中,直线的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求直线的普通方程,曲线C的直角坐标方程;(2)设直线与曲线C相交于A,B两点,点,求的值.20.(12分)已知椭圆与椭圆的焦点相同,且椭圆C过点(1)求椭圆C的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,且(O为坐标原点),若存在,求出该圆的方程;若不存在,说明理由21.(12分)如图,正三棱柱的侧棱长为,底面边长为,点为的中点,点在直线上,且(1)证明:面;(2)求平面和平面夹角的余弦值22.(10分)在三角形ABC中,三个顶点的坐标分别为,,,且D为AC的中点.(1)求三角形ABC的外接圆M方程;(2)求直线BD与外接圆M相交产生的相交弦的长度.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设点,利用抛物线的定义求出的值,可求得点的横坐标,即可得解.【详解】设点,易知抛物线的焦点为,由抛物线的定义可得,得,所以,点的横坐标为,故点到轴的距离为.故选:A.2、C【解析】直接根据通项公式,求;【详解】,故选:C3、B【解析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.详解】,,,,因此,所求切线的方程为,即.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题4、B【解析】求出,代值计算可得的值.【详解】因为,则,故.故选:B.5、D【解析】依题意,不妨设点A的坐标为,在中,由余弦定理得,再根据离心率公式计算即可.【详解】设椭圆的焦距为,则椭圆的左焦点的坐标为,右焦点的坐标为,依题意,不妨设点A的坐标为,在中,由余弦定理得:,,,,解得.故选:D.【点睛】本题考查椭圆几何性质,在中,利用余弦定理求得是关键,属于中档题.6、C【解析】由复数的除法运算可得答案.【详解】由题得,所以复数z的虚部为-3.故选:C.7、C【解析】结合排列组合的知识,分两种情况求解.【详解】当分组为1人,1人,3人时,有种,当分组为1人,2人,2人时有种,所以共有种排法.故选:C8、B【解析】设点P到准线的距离为,根据抛物线的定义可知,即可根据点到直线的距离最短求出【详解】如图所示:设点P到准线的距离为,准线方程为,所以,当且仅当点为与抛物线的交点时,取得最小值,此时点P的坐标为故选:B9、C【解析】根据给定条件利用两条直线互相垂直的关系列式计算作答.【详解】因直线与互相垂直,则,解得,所以实数a的值为.故选:C10、A【解析】由题意可知,已知,,则可以推出,反之不成立.【详解】已知,,则可以推出,已知,,则不可以推出.故是的充分不必要条件.故选:A.11、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为3.故选:A12、A【解析】根据两圆有且仅有一条公切线,得到两圆内切,从而可求出结果.【详解】因为圆,圆心为,半径为;圆可化为,圆心为,半径,又圆与圆有且仅有一条公切线,所以两圆内切,因此,即,解得.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】取中点,利用线面垂直的判定方法可证得平面,由此可确定点轨迹为,再计算即可.【详解】取中点,连接,平面,平面,,又四边形为正方形,,又,平面,平面,又平面,;由题意得:,,,,;平面,,平面,,在侧面的边界及其内部运动,点轨迹为线段;故答案为:.14、2【解析】求出圆锥轴截面顶角大小,判断并求出所求面积最大值【详解】如图,是圆锥轴截面,是一条母线,设轴截面顶角为,因为圆锥的高为1,底面半径为,所以,,所以,,设圆锥母线长为,则,截面的面积为,因为,所以时,故答案为:215、56【解析】根据系统抽样的定义得到编号之间的关系,即可得到结论.【详解】由已知样本中的前两个编号分别为02,08,则样本数据间距为,则样本容量为,则对应的号码数,则当时,x取得最大值为56故答案为:5616、2n+1【解析】由计算,再计算可得结论【详解】由题意时,,又适合上式,所以故答案为:【点睛】本题考查由求通项公式,解题根据是,但要注意此式不含,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)=0.3x-0.4;(2)正相关;(3)1.7(千元).【解析】(1)由题意得到n=10,求得,进而求得,写出回归方程;.(2)由判断;(3)将x=7代入回归方程求解.【详解】(1)由题意知n=10,,则,所以所求回归方程为=0.3x-0.4.(2)因为,所以变量y的值随x的值增加而增加,故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为=0.3×7-0.4=1.7(千元).18、(1)(2)证明见解析【解析】(1)方法一:根据离心率以及,可得出,将条件转化为点在以为直径的圆上,即为圆与椭圆的交点,将的面积用表示,求出,进而求出椭圆的标准方程;方法二:根据椭圆的定义,,再根据勾股定理和直角三角形的面积公式,即可解得,又由离心率求出,则可求出椭圆的标准方程;(2)设出直线的方程,代入椭圆方程,根据韦达定理表示出,再将直线的方程代入椭圆方程,求出,则为定值.【小问1详解】方法一:由离心率,得:,所以椭圆上一点,满足,所以点为圆:与椭圆的交点,联立方程组解得所以,解得:,所以椭圆的标准方程为:.方法二:由椭圆定义;,因为,所以,得到:,即,又,得所以椭圆C的标准方程为:;【小问2详解】设直线AB的方程为:.得设过点且平行于的直线方程:.19、(1)直线的普通方程为;曲线C的直角坐标方程为(2)【解析】(1)根据转换关系将参数方程和极坐标方程转化为直角坐标方程即可;(2)将直线的参数方程化为标准形式,代入曲线C的直角坐标方程,设点A,B对应的参数分别为,利用韦达定理即可得出答案.【小问1详解】解:将直线的参数方程中的参数消去得,则直线的普通方程为,由曲线C的极坐标方程为,得,即,由得曲线C的直角坐标方程为;【小问2详解】解:点满足,故点在直线上,将直线的参数方程化为标准形式(为参数),代入曲线C的直角坐标方程为,得,设点A,B对应的参数分别为,则,所以.20、(1);(2)存在,.【解析】(1)与焦点相同可求出c,将代入方程结合a、b、c关系即可求a和b;(2)直线AB斜率存在时,设直线AB的方程为,联立AB方程与椭圆方程,得到根与系数的关系;由得,结合韦达定理得k与m的关系;再由圆与直线相切,即可求其半径;最后再验证AB斜率不存在时的情况即可.【小问1详解】,由题可知,解得点,所以椭圆的方程为;【小问2详解】设,设,代入,整理得,由得,即,由韦达定理化简得,即,设存在圆与直线相切,则,解得,所以圆的方程为,又若轴时,检验知满足条件,故存在圆心在原点的圆符合题意21、(1)证明见解析(2)【解析】(1)证明平面,可得出,再由结合线面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,利用空间向量法可求得结果.【小问1详解】证明:正中,点为的中点,,因为平面,平面,则,,则平面,平面,则,又,且,平面.【小问2详解】解:因为,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、、,设平面的法向量为,,,则,取,可得,平面,平面,则,又因为,,故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论