版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省安阳市第三十五中学2026届数学高一上期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.平行四边形中,,,,点满足,则A.1 B.C.4 D.2.下列函数中为奇函数,且在定义域上为增函数的有()A. B.C. D.3.已知,,,则()A. B.C. D.4.设,,,则下列正确的是()A. B.C. D.5.为了得到函数图象,只需把的图象上的所有点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位6.已知集合,,则集合A. B.C. D.7.已知,,且满足,则的最小值为()A.2 B.3C. D.8.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线,与圆的位置关系是“平行相交”,则实数的取值范围为A. B.C. D.9.已知,,,则a,b,c的大小关系是A. B.C. D.10.如图是一个几何体的三视图,则此几何体的直观图是.A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,则等于______12.设函数,则____________13.利用随机数表法对一个容量为90,编号为00,01,02,…,89的产品进行抽样检验,抽取一个容量为10的样本,若选定从第2行第3列的数开始向右读数(下面摘取了随机数表中的第1行至第5行),根据下图,读出的第3个数是___________.14.函数关于直线对称,设,则________.15.若存在常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数的取值范围是______16.已知函数是幂函数,且在x∈(0,+∞)上递减,则实数m=________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)记,已知函数为奇函数,求实数b的值;(2)求证:函数是上的减函数18.为了在冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层、某栋房屋要建造能使用20年的隔热层,每厘米厚的隔热层的建造成本是6万元,该栋房屋每年的能源消耗费用C(万元)与隔热层厚度x(厘米)满足关系式:,若无隔热层,则每年能源消耗费用为5万元.设为隔热层建造费用与使用20年的能源消耗费用之和.(1)求和的表达式;(2)当隔热层修建多少厘米厚时,总费用最小,并求出最小值.19.已知函数(1)判断在区间上的单调性,并用函数单调性的定义给出证明;(2)设(k为常数)有两个零点,且,当时,求k的取值范围20.已知函数,,其中(1)写出的单调区间(无需证明);(2)求在区间上的最小值;(3)若对任意,均存在,使得成立,求实数的取值范围21.已知.(1)求的值;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】选取,为基向量,将,用基向量表示后,再利用平面向量数量积的运算法则求解数量积.【详解】,,,故选B【点睛】本题考查了平面向量的运算法则以及向量数量积的性质及其运算,属中档题.向量的运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).2、C【解析】根据函数的奇偶性,可排除A,B;说明的奇偶性以及单调性,可判断C;根据的单调性,判断D.【详解】函数为非奇非偶函数,故A错;函数为偶函数,故B错;函数,满足,故是奇函数,在定义域R上,是单调递增函数,故C正确;函数在上是增函数,在上是增函数,在定义域上不单调,故D错,故选:C3、C【解析】因为所以选C考点:比较大小4、D【解析】计算得到,,,得到答案.【详解】,,.故.故选:.【点睛】本题考查了利用函数单调性比较数值大小,意在考查学生对于函数性质的灵活运用.5、D【解析】利用三角函数图象的平移规律可得结论.【详解】因为,所以,为了得到函数的图象,只需把的图象上的所有点向右平移个单位.故选:D.6、B【解析】利用一元二次方程的解法化简集合化简集合,利用并集的定义求解即可.【详解】由一元二次方程的解法化简集合,或,,或,故选B.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.7、C【解析】由题意得,根据基本不等式“1”的代换,计算即可得答案.【详解】因为,所以,所以,当且仅当时,即,时取等号所以的最小值为.故选:C8、D【解析】根据定义先求出l1,l2与圆相切,再求出l1,l2与圆外离,结合定义即可得到答案.【详解】圆C的标准方程为(x+1)2+y2=b2.由两直线平行,可得a(a+1)-6=0,解得a=2或a=-3.当a=2时,直线l1与l2重合,舍去;当a=-3时,l1:x-y-2=0,l2:x-y+3=0.由l1与圆C相切,得,由l2与圆C相切,得.当l1、l2与圆C都外离时,.所以,当l1、l2与圆C“平行相交”时,b满足,故实数b的取值范围是(,)∪(,+∞)故选D.9、A【解析】根据对数函数的性质,确定的范围,即可得出结果.【详解】因为单调递增,所以,又,所以.故选A【点睛】本题主要考查对数的性质,熟记对数的性质,即可比较大小,属于基础题型.10、D【解析】由已知可得原几何体是一个圆锥和圆柱的组合体,上部分是一个圆锥,下部分是一个圆柱,而且圆锥和圆柱的底面积相等,故此几何体的直观图是:故选D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题;,又,代入得:考点:三角函数的公式变形能力及求值.12、2【解析】利用分段函数由里及外逐步求解函数的值即可.【详解】解:由已知,所以,故答案为:.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力.13、75【解析】根据随机数表法进行抽样即可.【详解】从随机数表的第2行第3列的数开始向右读数,第一个编号为62,符合;第二个编号为38,符合;第三个编号为97,大于89,应舍去;下一个编号为75,符合.所以读出的第3个数是:75.故答案为:75.14、1【解析】根据正弦及余弦函数的对称性的性质可得的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心,即可求值.【详解】∵函数f(x)的图象关于x对称∵f(x)=3sin(ωx+φ)的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心故有则1故答案为1【点睛】本题考查了正弦及余弦函数的性质属于基础题15、【解析】由已知可得、恒成立,可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以,当时,可得对任意的恒成立,则,即,当时,可得对恒成立,令,则有对恒成立,所以或,解得或,综上所述,实数的取值范围是.故答案为:.16、2【解析】由幂函数的定义可得m2-m-1=1,得出m=2或m=-1,代入验证即可.【详解】是幂函数,根据幂函数的定义和性质,得m2-m-1=1解得m=2或m=-1,当m=2时,f(x)=x-3在(0,+∞)上是减函数,符合题意;当m=-1时,f(x)=x0=1在(0,+∞)上不是减函数,所以m=2故答案为:2【点睛】本题考查了幂函数的定义,考查了理解辨析能力和计算能力,属于基础题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)由奇函数性质列方程去求实数b的值即可解决;(2)以减函数定义去证明函数是上的减函数即可.【小问1详解】函数的定义域为,,∵为奇函数,,所以恒成立,即恒成立,解得,经检验时,为奇函数.故实数b的值为【小问2详解】设任意实数,则,因为,所以,,即又,则所以,即,所以函数是上的减函数18、(1),(2)隔热层修建4厘米厚时,总费用达到最小值,最小值为64万元【解析】(1)由已知,又不建隔热层,每年能源消耗费用为5万元.所以可得C(0)=5,由此可求,进而得到.由已知建造费用为6x,根据隔热层建造费用与20年的能源消耗费用之和为f(x),可得f(x)的表达式(2)由(1)中所求的f(x)的表达式,利用基本不等式求出总费用f(x)的最小值【小问1详解】因为,若无隔热层,则每年能源消耗费用为5万元,所以,故,因为为隔热层建造费用与使用20年的能源消耗费用之和,所以.【小问2详解】,当且仅当,即时,等号成立,即隔热层修建4厘米厚时,总费用达到最小值,最小值为64万元.19、(1)在区间上的单调递减,证明详见解析;(2)【解析】(1)在区间上的单调递减,任取,且,再判断的符号即可;(2)令,得到,根据,转化为有两个零点,且,求解.【小问1详解】解:在区间上的单调递减,证明如下:任取,且,则,因为,所以,因为,所以,所以,即,所以在区间上的单调递减;【小问2详解】令,则,因为,所以,则,即,因为(k为常数)有两个零点,且,,所以(k为常数)有两个零点,且,,所以,解得.20、(1)的单调递增区间是,单调递减区间是(2)(3)【解析】(1)利用去掉绝对值及一次函数的性质即可求解;(2)根据(1)的结论,利用单调性与最值的关系即可求解;(3)根据已知条件将问题转化为,再利用函数的单调性与最值的关系,分情况讨论即可求解.【小问1详解】由,得,所以函数的单调递增区间是,单调递减区间是,【小问2详解】由(1)知,函数的单调递增区间是,单调递减区间是,当,即时,当时,函数取得最小值为,当,即时,当时,函数取得最小值为,综上所述,函数在区间上的最小值为.【小问3详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年会酒店协议价格合同
- 大米销售承包合同范本
- 山林土地租赁合同范本
- 广东临时保洁合同范本
- 房屋施工安全合同范本
- 承接草籽工程合同范本
- 设计心理学成功和失败案例教案
- 幼儿园小班《腊八节》教案
- 管理学计划教案
- 小学综合实践活动家务劳动主题教育班会小扫把动起来教案
- 商场活动服务合同范本
- DB31/T 1210-2020非居住物业管理服务规范
- 《家畜胚胎发育》课件
- T-CEIA ESD1007-2024 锂离子电池生产静电防护要求
- 物证技术学课件
- 农村个人土地承包合同模板
- 2025届北京市海淀区一零一中学数学七年级第一学期期末综合测试模拟试题含解析
- 初中道德与法治课中提升学生政治认同素养的策略研究
- 糖尿病的急救和护理
- 小学道德与法治-认识居民身份证教学课件设计
- 采购灭火器施工方案
评论
0/150
提交评论