版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北省咸宁市重点中学数学高二上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若抛物线y2=4x上一点P到x轴的距离为2,则点P到抛物线的焦点F的距离为()A.4 B.5C.6 D.72.已知空间三点,,在一条直线上,则实数的值是()A.2 B.4C.-4 D.-23.连掷一枚均匀的骰子两次,所得向上的点数分别为m,n,记,则下列说法正确的是()A.事件“”的概率为 B.事件“t是奇数”与“”互为对立事件C.事件“”与“”互为互斥事件 D.事件“且”的概率为4.阿基米德是古希腊著名的数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知在平面直角坐标系中,椭圆的面积为,两焦点与短轴的一个端点构成等边三角形,则椭圆的标准方程是()A. B.C. D.5.已知双曲线,点F为其左焦点,点B,若BF所在直线与双曲线的其中一条渐近线垂直,则该双曲线的离心率为()A. B.C. D.6.已知椭圆的右焦点为,为坐标原点,为轴上一点,点是直线与椭圆的一个交点,且,则椭圆的离心率为()A. B.C. D.7.曲线在处的切线如图所示,则()A. B.C. D.8.东汉末年的数学家赵爽在《周髀算经》中利用一副“弦图”,根据面积关系给出了勾股定理的证明,后人称其为“赵爽弦图”.如图1,它由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形.对于图2.下列结论正确的是()①这三个全等的钝角三角形不可能是等腰三角形;②若,,则;③若,则;④若是的中点,则三角形的面积是三角形面积的7倍.A.①②④ B.①②③C.②③④ D.①③④9.已知函数,若在处取得极值,且恒成立,则实数的最大值为()A. B.C. D.10.下列关于抛物线的图象描述正确的是()A.开口向上,焦点为 B.开口向右,焦点为C.开口向上,焦点为 D.开口向右,焦点为11.设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B.C. D.12.已知函数,则()A.函数的极大值为,无极小值 B.函数的极小值为,无极大值C.函数的极大值为0,无极小值 D.函数的极小值为0,无极大值二、填空题:本题共4小题,每小题5分,共20分。13.如图的形状出现存南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”的最一上层有1个球,第二层有3个球,第三层有6个球……,设从上至下各层球数构成一个数列则___________.(填数字)14.设、为正数,若,则的最小值是______,此时______.15.若、是双曲线的左右焦点,过的直线与双曲线的左右两支分别交于,两点.若为等边三角形,则双曲线的离心率为________.16.已知数列满足0,,则数列的通项公式为____,则数列的前项和______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正四棱柱中,,,点在棱上,且平面(1)求的值;(2)若,求二面角的余弦值18.(12分)已知数列和满足,(1)若,求的通项公式;(2)若,,证明为等差数列,并求和的通项公式19.(12分)已知抛物线的焦点与双曲线的右焦点重合,双曲线E的渐近线方程为(1)求抛物线C的标准方程和双曲线E的标准方程;(2)若O是坐标原点,直线与抛物线C交于A,B两点,求的面积20.(12分)在①,;②,,③,这三个条件中任选一个,补充在下面问题中并解决问题问题:设等差数列的前项和为,________________,若,判断是否存在最大值,若存在,求出取最大值时的值;若不存在,说明理由注:如果选择多个条件分别解答.按第一个解答记分21.(12分)已知椭圆上的点到左、右焦点、的距离之和为4,且右顶点A到右焦点的距离为1.(1)求椭圆的方程;(2)直线与椭圆交于不同两点,,记的面积为,当时求的值.22.(10分)已知函数.(1)当时,求的极值;(2)设函数,,,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据抛物线y2=4x上一点P到x轴的距离为2,得到点P(3,±2),然后利用抛物线的定义求解.【详解】由题意,知抛物线y2=4x的准线方程为x=-1,∵抛物线y2=4x上一点P到x轴的距离为2,则P(3,±2),∴点P到抛物线的准线的距离为3+1=4,∴点P到抛物线的焦点F的距离为4.故选:A.2、C【解析】根据三点在一条直线上,利用向量共线原理,解出实数的值.【详解】解:因为空间三点,,在一条直线上,所以,故.所以.故选:C.【点睛】本题主要考查向量共线原理,属于基础题.3、D【解析】计算出事件“t=12”的概率可判断A;根据对立事件的概念,可判断B;根据互斥事件的概念,可判断C;计算出事件“t>8且mn<32”的概率可判断D;【详解】连掷一枚均匀的骰子两次,所得向上的点数分别为m,n,则共有个基本事件,记t=m+n,则事件“t=12”必须两次都掷出6点,则事件“t=12”的概率为,故A错误;事件“t是奇数”与“m=n”为互斥不对立事件,如事件m=3,n=5,故B错误;事件“t=2”与“t≠3”不是互斥事件,故C错误;事件“t>8且mn<32”有共9个基本事件,故事件“t>8且mn<32”的概率为,故D正确;故选:D4、A【解析】由椭圆的面积为和两焦点与短轴的一个端点构成等边三角形,得到求解.【详解】由题意得,解得,所以椭圆的标准方程是.故选:A5、C【解析】设出双曲线半焦距c,利用斜率坐标公式结合垂直关系列式计算作答.【详解】设双曲线半焦距为c,则,直线BF的斜率为,双曲线的渐近线为:,因直线BF与双曲线的一条渐近线垂直,则有,即,于是得,而,解得,所以双曲线的离心率为.故选:C6、D【解析】设椭圆的左焦点为,由椭圆的对称性可知,则,所以,即可得到的关系,利用椭圆的定义进而求得离心率.【详解】设椭圆的左焦点为,连接,因为,所以,如图所示,所以,设,,则,所以,故选:D.7、C【解析】由图可知切线斜率为,∴.故选:C.8、A【解析】对于①,由三角形大边对大角的性质分析,对于②,根据题意利用正弦定理分析,对于③,利用余弦定理分析,对于④,利用三角形的面积公式分析判断【详解】对于①,根据题意,图2,它是由三个全等的钝角三角形与一个小等边三角形拼成的一个大等边三角形,故,,所以这三个全等的钝角三角形不可能是等腰三角形,故①正确;对于②,由题知,在中,,,,所以,所以由正弦定理得解得,因为,所以,故②正确;对于③,不妨设,所以在中,由余弦定理得,代入数据得,所以,所以,故③错误;对于④,若是的中点,则,所以,故④正确.故选:A第II卷(非选择题9、D【解析】根据已知在处取得极值,可得,将在恒成立,转化为,只需求,求出最小值即可得答案【详解】解:,,由在处取得极值,得,解得,所以,,其中,.当时,,此时函数单调递减,当时,,此时函数单调递增,故函数在处取得极小值,,恒成立,转化为,令,,则,,令得,当时,,此时函数单调递减,当时,,此时函数单调递增,所以,即得,故选:D10、A【解析】把化成抛物线标准方程,依据抛物线几何性质看开口方向,求其焦点坐标即可解决.【详解】,即.则,即故此抛物线开口向上,焦点为故选:A11、B【解析】分析:由双曲线性质得到,然后在和在中利用余弦定理可得详解:由题可知在中,在中,故选B.点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题12、A【解析】利用导数来求得的极值.【详解】的定义域为,,在递增;在递减,所以的极大值为,没有极小值.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题中给出的图形,结合题意找到各层球的数列与层数的关系,得到,即可得解【详解】解:由题意可知,,,,,,故,所以,故答案为:14、①.4②.【解析】巧用“1”改变目标式子的结果,借助均值不等式求最值即可.【详解】,当且仅当即,时等号成立.故答案为,【点睛】本题考查最值的求法,注意运用“1”的代换法和基本不等式,考查运算能力,属于中档题15、【解析】根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c=a,结合双曲线离心率公式即可算出双曲线C的离心率.【详解】因为△ABF2为等边三角形,可知,A为双曲线上一点,,B为双曲线上一点,则,即,∴由,则,已知,在△F1AF2中应用余弦定理得:,得c2=7a2,则e2=7⇒e=故答案为:【点睛】方法点睛:求双曲线的离心率,常常不能经过条件直接得到a,c的值,这时可将或视为一个整体,把关系式转化为关于或的方程,从而得到离心率的值.16、①.②.【解析】第一空:先构造等比数列求出,即可求出的通项公式;第二空:先求出,令,通过错位相减求出的前项和为,再结合等差数列的求和公式及分组求和即可求解.【详解】第一空:由可得,又,则是以1为首项,2为公比的等比数列,则,则;第二空:,设,前项和为,则,,两式相减得,则,又,则.故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2).【解析】如图,以点为原点,,,的方向分别为,,轴的正方向,建立空间直角坐标系,(1)设,由平面,可得,从而数量积为零,可求出的值,进而可求得的值;(2)利用空间向量求二面角的余弦值【详解】解:(1)如图,以点为原点,,,的方向分别为,,轴的正方向,建立空间直角坐标系,设,则点,,,则,因为平面,所以,所以,解得或当时,,,;当时,,,(2)因为,由(1)知,平面的一个法向量为设平面的法向量为,因为,,所以令,则所以,由图知,二面角的平面角为锐角,所以二面角的余弦值为18、(1)(2)证明见解析,,【解析】(1)代入可得,变形得构造等比数列求的通项公式;(2)先由已知得,先分别求出,的通项公式,然后合并可得的通项公式,进而可得的通项公式【小问1详解】当,时,,所以,即,整理得,所以是以为首项,为公比的等比数列故,即【小问2详解】当时,由,,得,所以因为,所以,则是以为首项,2为公差的等差数列,,;是以为首项,2为公差的等差数列,,综上所述,所以,,故是以2为首项,1为公差的等差数列当时,,且满足,所以19、(1);(2)【解析】(1)由双曲线的渐近线方程为,可得,继而得到双曲线的右焦点为,即为抛物线的焦点坐标,可得,即得解;(2)联立直线与抛物线,可得,再由直线过抛物线的焦点,故,三角形的高为O到直线的距离,利用点到直线公式,求解即可【小问1详解】由题意,双曲线渐近线方程为:,所以,所以双曲线E的标准方程为:故双曲线故双曲线的右焦点为,所以,,所以【小问2详解】由题意联立,得,又所以因为直线过抛物线的焦点,所以O到直线的距离,20、答案不唯一,具体见解析【解析】选①:易得,法一:令求n,即可为何值时取最大值;法二:写出,利用等差数列前n项和的函数性质判断为何值时有最大值;选②:由数列前n项和及等差数列下标和的性质易得、即可确定有最大值时值;选③:由等差数列前n项和公式易得、即可确定有最大值时值;【详解】选①:设数列的公差为,,,解得,即,法一:当时,有,得,∴当时,;,;时,,∴或时,取最大值法二:,对称轴,∴或时,取最大值选②:由,得,由等差中项的性质有,即,由,得,∴,故,∴当时,,时,,故时,取最大值选③:由,得,可得,由,得,可得,∴,故,∴当时,,时,,故时,取最大值【点睛】关键点点睛:根据所选的条件,结合等差数列前n项和公式的性质、下标和相等的性质等确定数列中项的正负性,找到界点n值即可.21、(1)(2)【解析】(1)根据题意得到,,再根据求解即可.(2)首先设,,再根据求解即可.【小问1详解】由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年智慧农业行业精准种植报告及物联网创新报告
- 2025年能源行业太阳能电池效率提升报告
- 2026年乐清市文化和广电旅游体育局公开招聘越剧演员(学员)的备考题库完整答案详解
- 2026年中国人寿保险股份有限公司长沙支公司暮云营销服务部招聘备考题库完整参考答案详解
- 2026年中共舟山市普陀区委政法委员会公开招聘编外工作人员备考题库有答案详解
- 2025年车载冰箱行业政策与市场前景报告
- 2026年中国航天科工集团六院情报备考题库研究中心招聘备考题库附答案详解
- 2026年惠州市公安局招聘警务辅助人员612人备考题库及答案详解参考
- 2026年中物流服务管理(雄安)有限公司招聘备考题库及参考答案详解一套
- 2026年东莞市公安局石碣分局警务辅助人员招聘备考题库含答案详解
- 2025年凉山教师业务素质测试题及答案
- 健康管理方案设计案例分析
- 宫外孕破裂出血护理查房
- 农产品市场营销的定性与定量研究方法
- 七年级数学一元一次方程应用题复习题及答案
- 妇科腹腔镜手术课件
- 储能电站检修规程
- 离婚冷静期制度的构建与完善
- 外挂钢楼梯专项施工方案
- 吊装作业危害分析评价记录表
- 部编版初中语文九年级下册第三单元整体教学设计
评论
0/150
提交评论