浙江省湖州市长兴县、德清县、安吉县2026届数学高二上期末预测试题含解析_第1页
浙江省湖州市长兴县、德清县、安吉县2026届数学高二上期末预测试题含解析_第2页
浙江省湖州市长兴县、德清县、安吉县2026届数学高二上期末预测试题含解析_第3页
浙江省湖州市长兴县、德清县、安吉县2026届数学高二上期末预测试题含解析_第4页
浙江省湖州市长兴县、德清县、安吉县2026届数学高二上期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省湖州市长兴县、德清县、安吉县2026届数学高二上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线过点,当直线与圆有两个不同的交点时,其斜率的取值范围是()A. B.C. D.2.数列,则是这个数列的第()A.项 B.项C.项 D.项3.点到直线的距离是()A. B.C. D.4.过抛物线C:的准线上任意一点作抛物线的切线,切点为,若在轴上存在定点,使得恒成立,则点的坐标为()A. B.C. D.5.抛物线上的一点到其焦点的距离等于()A. B.C. D.6.随机地向两个标号分别为1与2的格子涂色,涂上红色或绿色,在已知其中一个格子颜色为红色条件下另一个格子颜色也为红色的概率为()A. B.C. D.7.已知两圆相交于两点,,两圆圆心都在直线上,则值为()A. B.C. D.8.若直线与直线平行,则()A. B.C. D.9.已知F为椭圆C:=1(a>b>0)右焦点,O为坐标原点,P为椭圆C上一点,若|OP|=|OF|,∠POF=120°,则椭圆C的离心率为()A. B.C.-1 D.-110.已知直线过点,,则该直线的倾斜角是()A. B.C. D.11.在正方体中,分别是线段的中点,则点到直线的距离是()A. B.C. D.12.设实数x,y满足约束条件则的最小值()A.5 B.C. D.8二、填空题:本题共4小题,每小题5分,共20分。13.一条光线经过点射到直线上,被反射后经过点,则入射光线所在直线的方程为___________.14.已知经过两点,的直线的斜率为1,则a的值为___________.15.已知数列的前项和为,且满足,则______.16.若函数在区间内存在最大值,则实数的取值范围是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合,(1)若,求m的取值范围;(2)若“x∈B”是“x∈A”的充分不必要条件,求m的取值范围18.(12分)已知数列{an}是一个等差数列,且a2=1,a5=-5.(1)求{an}的通项an;(2)求{an}前n项和Sn的最大值19.(12分)如图,已知椭圆:()的左、右焦点分别为、,离心率为.过的直线与椭圆的一个交点为,过垂直于的直线与椭圆的一个交点为,.(1)求椭圆的方程和点的轨迹的方程;(2)若曲线上的动点到直线:的最大距离为,求的值.20.(12分)已知公比的等比数列和等差数列满足:,,其中,且是和的等比中项(1)求数列与的通项公式;(2)记数列的前项和为,若当时,等式恒成立,求实数的取值范围21.(12分)有1000人参加了某次垃圾分类知识竞赛,从中随机抽取100人,将这100人的此次竞赛的分数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],并整理得到如下频率分布直方图.(1)求图中a的值;(2)估计总体1000人中竞赛分数不少于70分的人数;(3)假设同组中的每个数据都用该组区间的中点值代替,估计总体1000人的竞赛分数的平均数.22.(10分)已知,2,4,6中的三个数为等差数列的前三项,且100不在数列中,102在数列中.(1)求数列的通项;(2)设,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设直线方程,利用圆与直线的关系,确定圆心到直线的距离小于半径,即可求得斜率范围.【详解】如下图:设直线l的方程为即圆心为,半径是1又直线与圆有两个不同的交点故选:A2、A【解析】根据数列的规律,求出通项公式,进而求出是这个数列的第几项【详解】数列为,故通项公式为,是这个数列的第项.故选:A.3、B【解析】直接使用点到直线距离公式代入即可.【详解】由点到直线距离公式得故选:B4、D【解析】设切点,点,联立直线的方程和抛物线C的准线方程可得,将问题转化为对任意点恒成立,可得,解出,从而求出答案【详解】设切点,点由题意,抛物线C的准线,且由,得,则直线的方程为,即,联立令,得由题意知,对任意点恒成立,也就是对任意点恒成立因为,,则,即对任意实数恒成立,所以,即,所以,故选:D【点睛】一般表示抛物线的切线方程时可将抛物线方程转化为函数解析式,可利用导数的几何意义求解切线斜率,再代入计算.5、C【解析】由点的坐标求得参数,再由焦半径公式得结论【详解】由题意,解得,所以,故选:C6、D【解析】根据古典概型的概率公式即可得出答案.【详解】在已知其中一个格子颜色为红色条件下另一个格子颜色有红色与绿色两种情况,其中一个格子颜色为红色条件下另一个格子颜色也为红色的情况有1种,所以在已知其中一个格子颜色为红色条件下另一个格子颜色也为红色的概率为.故选:D.7、A【解析】由相交弦的性质,可得与直线垂直,且的中点在这条直线上;由与直线垂直,可得,解可得的值,即可得的坐标,进而可得中点的坐标,代入直线方程可得;进而将、相加可得答案【详解】根据题意,由相交弦的性质,相交两圆的连心线垂直平分相交弦,可得与直线垂直,且的中点在这条直线上;由与直线垂直,可得,解可得,则,故中点为,且其在直线上,代入直线方程可得,1,可得;故;故选:A【点睛】方法点睛:解答圆和圆的位置关系时,要注意利用平面几何圆的知识来分析解答.8、D【解析】根据两直线平行可得出关于实数的等式,由此可解得实数的值.【详解】由于直线与直线平行,则,解得.故选:D.9、D【解析】记椭圆的左焦点为,在中,通过余弦定理得出,,根据椭圆的定义可得,进而可得结果.【详解】记椭圆的左焦点为,在中,可得,在中,可得,故,故,故选:D.10、C【解析】根据直线的斜率公式即可求得答案.【详解】设该直线的倾斜角为,该直线的斜率,即.故选:C11、A【解析】以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系,然后,列出计算公式进行求解即可【详解】如图,以为坐标原点,分别以的方向为轴的正方向,建立空间直角坐标系.因为,所以,所以,则点到直线的距离故选:A12、B【解析】做出,满足约束条件的可行域,结合图形可得答案.【详解】做出,满足约束条件可行域如图,化为,平移直线,当直线经过点时有最小值,由得,所以的最小值为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求点关于直线的对称点,连接,则直线即为所求.【详解】设点关于直线的对称点为,则,解得,所以,又点,所以,直线的方程为:,由图可知,直线即为入射光线,所以化简得入射光线所在直线的方程:.故答案为:.14、6【解析】根据经过两点的直线斜率计算公式即可求的参数a﹒【详解】由题意可知,解得故答案为:615、【解析】根据所给的通项公式,代入求得,并由代入求得,即可求得的值.【详解】数列的前n项和,则,而,,∴,则,故答案为:.16、【解析】首先利用导数判断函数的单调性,再根据函数在开区间内存在最大值,可判断极大值点就是最大值点,列式求解.【详解】由题可知:所以函数在单调递减,在单调递增,故函数的极大值为.所以在开区间内的最大值一定是又,所以得实数的取值范围是故答案为:【点睛】关键点点睛:由函数在开区间内若存在最大值,即极大值点在区间内,同时还得满足极大值点是最大值,还需列不等式,不要忽略这个不等式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先求出,由得到,得到不等式组,求出m的取值范围;(2)根据充分不必要条件得到是的真子集,分与两种情况进行求解,求得m的取值范围.【小问1详解】,解得:,故,因为,所以,故,解得:,所以m的取值范围是.【小问2详解】若“x∈B”是“x∈A”的充分不必要条件,则是的真子集,当时,,解得:,当时,需要满足:或,解得:综上:m取值范围是18、(1)an=-2n+5.(2)4【解析】(Ⅰ)设{an}的公差为d,由已知条件,,解出a1=3,d=-2所以an=a1+(n-1)d=-2n+5(Ⅱ)Sn=na1+d=-n2+4n=-(n-2)2+4,所以n=2时,Sn取到最大值419、(1)椭圆的方程为,点的轨迹的方程为(2)【解析】(1)由题意可得,求出,再结合,求出,从而可得椭圆的方程,设,则由题意可得,坐标代入化简可得点的轨迹的方程,(2)由题意结合点到直线的距离公式可得,设,将直线方程代入椭圆方程中消去,整理利用根与系数的关系,由,可得,因为,代入化简计算可求得答案【小问1详解】由题意得,解得,则,所以椭圆的方程,设,则由题意可得,所以,所以,所以点轨迹的方程为【小问2详解】由(1)知曲线是以原点为圆心,1为半径的圆,因为曲线上的动点到直线:的最大距离为,所以,得,设,由,得,所以,,因为,所以,所以,所以,因为,所以,所以,,所以,得,得(舍去),或20、(1),;(2).【解析】(1)根据已知条件可得出关于方程,解出的值,可求得的值,即可得出数列与的通项公式;(2)求得,利用错位相减法可求得,分析可知数列为单调递增数列,对分奇数和偶数两种情况讨论,结合参变量分离法可得出实数的取值范围.【详解】(1)设等差数列的公差为,因为,,,且是和的等比中项,所以,整理可得,解得或.若,则,可得,不合乎题意;若,则,可得,合乎题意.所以,;;(2)因为,①,②②①得因为,即对恒成立,所以当且,,故数列为单调递增数列,当为偶数时,,所以;当为奇数时,,所以,即.综上可得21、(1)0.040;(2)750;(3)76.5.【解析】(1)由频率分布直方图的性质列出方程,能求出图中的值;(2)先求出竞赛分数不少于70分的频率,由此能估计总体1000人中竞赛分数不少于70分的人数;(3)由频率分布直方图的性质能估计总体1000人的竞赛分数的平均数【详解】(1)由频率分布直方图得:,解得图中的值为0.040(2)竞赛分数不少于70分的频率为:,估计总体1000人中竞赛分数不少于70分的人数为(3)假设同组中的每个数据都用该组区间的中点值代替,估计总体1000人的竞赛分数的平均数为:【点睛】本题主要考查频率、频数、平均数的求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论