版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省潍坊市寿光市现代中学2026届高二上数学期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点,若直线与线段没有公共点,则的取值范围是()A. B.C. D.2.如图所示,某空间几何体的三视图是3个全等的等腰直角三角形,且直角边长为2,则该空间几何体的体积为()A. B.C. D.3.是双曲线:上一点,已知,则的值()A. B.C.或 D.4.已知向量,,则下列向量中,使能构成空间的一个基底的向量是()A. B.C. D.5.《莱茵德纸草书》(RhindPapyrus)是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是()个A.12 B.24C.36 D.486.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),问立夏日影长为()A.一尺五寸 B.二尺五寸C.三尺五寸 D.四尺五寸7.设,,则与的等比中项为()A. B.C. D.8.在空间直角坐标系下,点关于平面的对称点的坐标为()A. B.C. D.9.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A B.C. D.10.如图是抛物线形拱桥,当水面在n时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为()A. B.C. D.11.下列双曲线中,渐近线方程为的是A. B.C. D.12.直线被椭圆截得的弦长是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.经过两点的双曲线的标准方程是________14.已知双曲线,(,)的左右焦点分别为,过的直线与圆相切,与双曲线在第四象限交于一点,且有轴,则直线的斜率是___________,双曲线的渐近线方程为___________.15.据相关数据统计,部分省市的政府工作报告将“推进5G通信网络建设”列入2020年的重点工作,2020年一月份全国共建基站3万个如果从2月份起,以后的每个月比上一个月多建设0.2万个,那么2020年这一年全国共有基站________万个16.已知数列的前4项依次为,,,,则的一个通项公式为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点在椭圆:上,椭圆E的离心率为.(1)求椭圆E的方程;(2)若不平行于坐标轴且不过原点O的直线l与椭圆E交于B,C两点,判断是否可能为等边三角形,并说明理由.18.(12分)已知数列的前n项和,(1)求数列的通项公式;(2)设,,求数列的前n项和19.(12分)已知点,(1)若过点P作的切线只有一条,求实数的值及切线方程;(2)过点P作斜率为1的直线l与相交于M,N两点,当面积最大时,求实数的值20.(12分)设圆的圆心为A,直线l过点且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E(1)判断与题中圆A的半径的大小关系,并写出点E的轨迹方程;(2)过点作斜率为,的两条直线,分别交点E的轨迹于M,N两点,且,证明:直线MN必过定点21.(12分)从甲、乙两名学生中选拔一人参加射击比赛,现对他们的射击水平进行测试,两人在相同条件下各射靶10次,每次命中的环数如下:甲:7,8,6,8,6,5,9,10,7,乙:9,5,7,8,7,6,8,6,7,(1)求,,,(2)你认为应该选哪名学生参加比赛?为什么?22.(10分)内角A,B,C的对边分别为a,b,c,已知(1)求B;(2)若,且是锐角三角形,求c的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分别求出,即可得到答案.【详解】直线经过定点.因为,所以,所以要使直线与线段没有公共点,只需:,即.所以的取值范围是.故选:A2、A【解析】在该空间几何体的直观图中去求其体积即可.【详解】依托棱长为2的正方体得到该空间几何体的直观图为三棱锥则故选:A3、B【解析】根据双曲线定义,结合双曲线上的点到焦点的距离的取值范围,即可求解.【详解】双曲线方程为:,是双曲线:上一点,,,或,又,.故选:B4、D【解析】根据向量共面基本定理只需无解即可满足构成空间向量基底,据此检验各选项即可得解.【详解】因为,所以A中的向量不能与,构成基底;因为,所以B中的向量不能与,构成基底;对于,设,则,解得,,所以,故,,为共面向量,所以C中的向量不能与,构成基底;对于,设,则,此方程组无解,所以,,不共面,故D中的向量与,可以构成基底.故选:D5、D【解析】设等比数列的首项为,公比,根据题意,由求解.【详解】设等比数列的首项为,公比,由题意得:,即,解得,所以,故选:D6、D【解析】结合等差数列知识求得正确答案.【详解】设冬至日影长,公差为,则,所以立夏日影长丈,即四尺五寸.故选:D7、C【解析】利用等比中项的定义可求得结果.【详解】由题意可知,与的等比中项为.故选:C.8、C【解析】根据空间坐标系中点的对称关系求解【详解】点关于平面的对称点的坐标为,故选:C9、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得10、D【解析】由题建立平面直角坐标系,设抛物线方程为,结合条件即求.【详解】建立如图所示的直角坐标系:设抛物线方程为,由题意知:在抛物线上,即,解得:,,当水位下降1米后,即将代入,即,解得:,∴水面宽为米.故选:D.11、A【解析】由双曲线的渐进线的公式可行选项A的渐进线方程为,故选A.考点:本题主要考查双曲线的渐近线公式.12、A【解析】直线y=x+1代入,得出关于x的二次方程,求出交点坐标,即可求出弦长【详解】将直线y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直线y=x+1被椭圆x2+4y2=8截得的弦长为故选A【点睛】本题查直线与椭圆的位置关系,考查弦长的计算,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设双曲线的标准方程将点坐标代入求参数,即可确定标准方程.【详解】令,则,可得,令,则,无解.故双曲线的标准方程是.故答案为:.14、①.②.【解析】由题意,不妨设直线与圆相切于点,由可得,代入双曲线方程,可得,因此,即得解【详解】如图所示,不妨设直线与圆相切于点,,由于代入进入,可得,渐近线方程为故答案为:,15、2##【解析】由题意可知一月份到十二月份基站个数是以3为首项,0.2为公差的等差数列,根据等差数列求和公式可得答案.【详解】一月份全国共建基站3万个,2月全国共建基站万个,3月全国共建基站万个,,12月全国共建基站万个,基站个数是以3为首项,0.2为公差的等差数列,2020年这一年全国共有基站万个.故答案为:49.2.16、(答案不唯一)【解析】观察数列前几项,找出规律即可写出通项公式.【详解】根据数列前几项,先不考虑正负,可知,再由奇数项为负,偶数项为正,可得到一个通项公式,故答案为:(不唯一)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)三角形不可能是等边三角形,理由见解析【解析】(1)根据点坐标和离心率可得椭圆方程;(2)假设为等边三角形,设,与椭圆方程联立,由韦达定理得的中点的坐标,,利用得出矛盾.小问1详解】由点在椭圆上,得,即,又,即,解得,所以椭圆的方程为.【小问2详解】假设为等边三角形,设,,联立,消去得,由韦达定理得,由得,故,所以的中点为,所以,故,与等边三角形中矛盾,所以假设不成立,故三角形不可能是等边三角形.18、(1);(2)【解析】(1)将代入可求得.根据通项公式与前项和的关系,可得数列为等比数列,由等比数列的通项公式即可求得数列的通项公式.(2)由(1)可得数列的通项公式,代入中,结合裂项法求和即可得前n项和.【详解】(1)当时,由得;当时,由得是首项为3,公比为3的等比数列当,满足此式所以(2)由(1)可知,【点睛】本题考查了通项公式与前项和的关系,裂项法求和的应用,属于基础题.19、(1);当时,切线方程为;当时,切线方程为;(2)或【解析】(1)根据题意可知P在圆上,据此即可求t和切线方程;(2)的面积,则当面积最大时,.即,据此即可求出圆心O到直线l的距离,即可求出t的数值.【小问1详解】由题意得点在上,∴,,①当时,切点,直线OP的斜率,切线斜率,切线方程为,即②当时,切点,直线OP的斜率,切线斜率,切线方程,即【小问2详解】∵的面积,则当面积最大时,.即,则圆心O到直线l距离又直线,即,则,解之得或注:亦可设圆心O到直线l的距离为d,则的面积,当且仅当,即时取等号(下同)20、(1)与半径相等,(2)证明见解析【解析】(1)依据椭圆定义去求点E的轨迹方程事半功倍;(2)直线MN要分为斜率存在的和不存在的两种情况进行讨论,由设而不求法把条件转化为直线MN过定点的条件即可解决.【小问1详解】圆即为,可得圆心,半径,由,可得,由,可得,即为,即有,则,所以其与半径相等.因为,故E的轨迹为以A,B为焦点的椭圆(不包括左右顶点),且有,,即,,,则点E的轨迹方程为;【小问2详解】当直线MN斜率不存在时,设直线方程为,则,,,,则,∴,此时直线MN的方程为当直线MN斜率存在时,设直线方程为:,与椭圆方程联立:,得,设,,有则将*式代入化简可得:,即,∴,此时直线MN:,恒过定点又直线MN斜率不存在时,直线MN:也过,故直线MN过定点.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。21、(1);;;;(2)选乙参加比赛,理由见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物业管理服务合同(2025年服务升级)
- 医疗市场与竞争格局分析
- 医疗机构人力资源规划与实施策略研究
- 医疗信息化建设:提升医疗服务水平
- 2026年智能絮凝剂投加泵项目营销方案
- 中医治疗失眠症的疗效与机理
- 2026年遥感预警 SaaS项目营销方案
- 医疗资源优化配置与健康管理
- 课件的必要交互
- 2026年智能宠物项圈项目公司成立分析报告
- 粉丝群体特征分析-洞察与解读
- 2025年亚氨基二乙酸行业分析报告及未来发展趋势预测
- 路基工程安全教育培训课件
- 许三观卖血教学课件
- GB/T 14193.1-2025液化气体气瓶充装规定第1部分:工业气瓶
- 关于幼儿园师风师德管理细则制度(详细版)
- 2025至2030关节镜装置行业市场深度研究与战略咨询分析报告
- DB11∕T 2204-2023 房屋建筑和市政基础设施电气工程施工质量验收标准
- 王者荣耀介绍
- 社会保障学-终考测试-国开(ZJ)-参考资料
- 贵州省贵阳市2024-2025学年九年级上学期1月期末考试化学试题
评论
0/150
提交评论