版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃肃兰州市第五十一中学2026届高二上数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆就是他的研究成果之一.指的是:已知动点与两定点的距离之比,那么点的轨迹就是阿波罗尼斯圆.已知动点的轨迹是阿波罗尼斯圆,其方程为,其中,定点为轴上一点,定点的坐标为,若点,则的最小值为()A. B.C. D.2.已知过点的直线与圆相切,且与直线垂直,则()A. B.C. D.3.过双曲线-=1(a>0,b>0)的左焦点F(-c,0)作圆O:x2+y2=a2的切线,切点为E,延长FE交双曲线于点P,若E为线段FP的中点,则双曲线的离心率为()A. B.C.+1 D.4.已知F是抛物线的焦点,直线l是抛物线的准线,则F到直线l的距离为()A.2 B.4C.6 D.85.已知两圆相交于两点和,两圆的圆心都在直线上,则的值为A. B.2C.3 D.06.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校男教师的人数为()A.167 B.137C.123 D.1137.若方程表示双曲线,则的取值范围是()A.或 B.C.或 D.8.“”是“直线与直线垂直”的A.充分必要条件 B.充分非必要条件C.必要不充分条件 D.既不充分也不必要条件9.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.11010.若展开式的二项式系数之和为,则展开式的常数项为()A. B.C. D.11.蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率(每分钟鸣叫的次数)与气温(单位:℃)存在着较强的线性相关关系.某地观测人员根据如表的观测数据,建立了关于的线性回归方程,则下列说法不正确的是()(次数/分钟)2030405060(℃)2527.52932.536A.的值是20B.变量,呈正相关关系C.若的值增加1,则的值约增加0.25D.当蟋蟀52次/分鸣叫时,该地当时的气温预报值为33.5℃12.设.若,则=()A. B.C. D.e二、填空题:本题共4小题,每小题5分,共20分。13.已知斜率为的直线与椭圆相交于不同的两点A,B,M为y轴上一点且满足|MA|=|MB|,则点M的纵坐标的取值范围是___________.14.设O为坐标原点,抛物线的焦点为F,P为抛物线上一点,若,则的面积为____________15.已知数列an满足,则__________16.若函数在[1,3]单调递增,则a的取值范围___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C的圆心在y轴上,且过点,(1)求圆C的方程;(2)已知圆C上存在点M,使得三角形MAB的面积为,求点M的坐标18.(12分)已知函数(m≥0).(1)当m=0时,求曲线在点(1,f(1))处的切线方程;(2)若函数的最小值为,求实数m的值.19.(12分)双曲线(,)的离心率,且过点.(1)求a,b的值;(2)求与双曲线C有相同渐近线,且过点的双曲线的标准方程.20.(12分)已知数列中,,的前项和为,且数列是公差为-3的等差数列.(1)求;(2)若,数列前项和为.21.(12分)如图甲,平面图形中,,沿将折起,使点到点的位置,如图乙,使.(1)求证:平面平面;(2)若点满足,求点到直线的距离.22.(10分)如图,在四棱锥中,底面ABCD是边长为1的菱形,且,侧棱,,M是PC的中点,设,,(1)试用,,表示向量;(2)求BM的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,,根据和求出a的值,由,两点之间直线最短,可得的最小值为,根据坐标求出即可.【详解】设,,所以,由,所以,因为且,所以,整理可得,又动点M的轨迹是,所以,解得,所以,又,所以,因为,所以的最小值,当M在位置或时等号成立.故选:D2、B【解析】首先由点的坐标满足圆的方程来确定点在圆上,然后求出过点的圆的切线方程,最后由两直线的垂直关系转化为斜率关系求解.【详解】由题知,圆的圆心,半径.因为,所以点在圆上,所以过点的圆的切线与直线垂直,设切线的斜率,则有,即,解得.因为直线与切线垂直,所以,解得.故选:B.3、A【解析】设F′为双曲线的右焦点,连接OE,PF′,根据圆的切线性质和三角形中位线得到|OE|=a,|PF′|=2a,利用双曲线的定义求得|PF|=4a,得到|EF|=2a,在Rt△OEF中,利用勾股定理建立关系即可求得离心率的值.【详解】不妨设E在x轴上方,F′为双曲线的右焦点,连接OE,PF′,如图所示:因为PF是圆O的切线,所以OE⊥PE,又E,O分别为PF,FF′的中点,所以|OE|=|PF′|,又|OE|=a,所以|PF′|=2a,根据双曲线的定义,|PF|-|PF′|=2a,所以|PF|=4a,所以|EF|=2a,在Rt△OEF中,|OE|2+|EF|2=|OF|2,即a2+4a2=c2,所以e=,故选A.【点睛】本题考查双曲线的离心率的求法,联想到双曲线的另一个焦点,作辅助线,利用双曲线的定义是求解离心率问题的有效方法.4、B【解析】根据抛物线定义即可求解【详解】由得,所以F到直线l的距离为故选:B5、C【解析】根据条件知:两圆的圆心的所在的直线与两圆的交点所在的直线垂直,以及两圆的交点的中点在两圆的圆心的所在的直线上,由此得到方程,得解.【详解】由已知两圆的交点与两圆的圆心的所在的直线垂直,,所以,又因为两圆的交点的中点在两圆的圆心所在的直线上,所以,解得:,所以,故选.【点睛】此题主要考查圆与圆的位置关系,解答此题的关键是需知两圆的圆心所在的直线与两圆的交点所在的直线垂直,并且两圆的交点的中点在两圆的圆心所在的直线上,此题属于基础题.6、C【解析】根据图形分别求出初中部和高中部男教师的人数,最后相加即可.【详解】初中部男教师的人数为110×(170%)=33;高中部男教师的人数为150×60%=90,∴该校男教师的人数为33+90=123.故选:C.7、A【解析】由和的分母异号可得【详解】由题意,解得或故选:A8、B【解析】先由两直线垂直求出的值,再由充分条件与必要条件的概念,即可得出结果.【详解】因为直线与直线垂直,则,即,解得或;因此由“”能推出“直线与直线垂直”,反之不能推出,所以“”是“直线与直线垂直”的充分非必要条件.故选B【点睛】本题主要考查命题充分不必要条件的判定,熟记充分条件与必要条件的概念,以及两直线垂直的判定条件即可,属于常考题型.9、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:10、C【解析】利用二项式系数的性质求得的值,再利用二项式展开式的通项公式,求得结果即可.【详解】解:因为展开式的二项式系数之和为,则,所以,令,求得,所以展开式的常数项为.故选:C.11、D【解析】根据样本中心过经过线性回归方程、正相关的性质和线性回归方程的意义进行判断即可.【详解】由题意,得,,则,故A正确;由线性回归方程可知,,变量,呈正相关关系,故B正确;若的值增加1,则的值约增加0.25,故C正确;当时,,故D错误.故选:D.12、D【解析】由题可得,将代入解方程即可.【详解】∵,∴,∴,解得.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设直线的方程为,由消去并化简得,设,,,解得..由于,所以是垂直平分线与轴的交点,垂直平分线方程为,令得,由于,所以.也即的纵坐标的取值范围是.故答案为:14、【解析】根据抛物线定义求出点坐标,即可求出面积.【详解】由题可得,设,则由抛物线定义可得,解得,代入抛物线方程可得,所以.故答案为:.15、2019【解析】将已知化为代入可以左右相消化简,将已知化为,代入可以上下相消化简,再全部代入求解即可.【详解】由知故所以故答案为:201916、【解析】由在区间上恒成立来求得的取值范围.【详解】依题意在区间上恒成立,在上恒成立,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)两点式求AB所在直线的斜率,结合点坐标求AB的垂直平分线,根据已知确定圆心、半径即可得圆C的方程;(2)求AB所在直线方程,几何关系求弦长,由三角形面积求点线距离,设M所在直线为,由点线距离公式列方程求参数,进而联立直线与圆C求M的坐标【小问1详解】由题意知,AB所在直线的斜率为,又,中点为,所以线段AB的垂直平分线为,即,联立,得,半径,所以圆C的方程为.【小问2详解】由题意,AB所在直线方程为,即,圆心到直线AB的距离为,故,因为三角形MAB的面积为,则点M到直线AB的距离为,设点M所在直线方程为,所以,所以或,当时,联立得:或,当时,联立,无解;所以或18、(1)(2)【解析】(1)求导,利用导函数的几何意义求解切线方程的斜率,进而求出切线方程;(2)对导函数再次求导,判断其单调性,结合隐零点求出其最小值,列出方程,求出实数m的值.【小问1详解】当时,因为,所以切线的斜率为,所以切线方程为,即.【小问2详解】因为,令,因为,所以在上单调递增,当实数时,,;当实数时,,;当实数时,,所以总存在一个,使得,且当时,;当时,,所以,令,因为,所以单调递减,又,所以时,所以,即.19、(1),(2)【解析】(1)根据已知条件建立关于a、b、c的方程组可解;(2)巧设与已知双曲线同渐近线的双曲线方程为可得.【小问1详解】因为离心率,所以.又因为点在双曲线C上,所以.联立上述方程,解得,,即,.【小问2详解】设所求双曲线的方程为,由双曲线经过点,得,即.所以双曲线的方程为,其标准方程为.20、(1)(2)【解析】(1)由条件先求出通项公式,得出,再由可得出答案.(2)由(1)可知,由裂项相消法可得答案.【小问1详解】由,则由数列是公差为的等差数列,则所以当时,当时,符合上式所以【小问2详解】由(1)可知则21、(1)证明见解析(2)【解析】(1)利用给定条件可得平面,再证即可证得平面推理作答.(2)由(1)得EA,EB,EG两两垂直,建立空间直角坐标系,先求出向量在向量上的投影的长,然后由勾股定理可得答案.【小问1详解】因为,则,且,又,平面,因此,平面,即有平面,平面,则,而,则四边形为等腰梯形,又,则有,于是有,则,即,,平面,因此,平面,而平面,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工作合同买卖合同范本
- 学校楼房拆除合同协议
- 委托规划建设合同范本
- 怎样作废无效协议合同
- 天猫商城备案合同范本
- 建筑工程延期合同范本
- 文化衫的设计制作美术四年级下册教案
- 防辐射抗污染知识培训教材教案
- 四年级数学下册第单元运算定律减法的性质及应用教案新人教版
- 消防安全技术综合能力习题班教案
- 食品工厂设计 课件 第二章 厂址选择
- 国能拟录人员亲属回避承诺书
- 蚕丝被的详细资料
- 2023年生产车间各类文件汇总
- WORD版A4横版密封条打印模板(可编辑)
- 2013标致508使用说明书
- YD5121-2010 通信线路工程验收规范
- 评价实验室6S检查标准
- 工程质量不合格品判定及处置实施细则
- 外观检验作业标准规范
- GB/T 308.1-2013滚动轴承球第1部分:钢球
评论
0/150
提交评论