版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省安顺市第二学期2026届高一数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,的终边(均不在y轴上)关于x轴对称,则()A. B.C. D.2.已知,则的最小值为().A.9 B.C.5 D.3.将函数,且,下列说法错误的是()A.为偶函数 B.C.若在上单调递减,则的最大值为9 D.当时,在上有3个零点4.将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得函数图象的一条对称轴是()A. B.C. D.5.一正方体的六个面上用记号笔分别标记了一个字,已知其表面展开图如图所示,则在原正方体中,互为对面的是()A.西与楼,梦与游,红与记B.西与红,楼与游,梦与记C.西与楼,梦与记,红与游D.西与红,楼与记,梦与游6.“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则;②若,,,则;③若,,则;④若,,则.其中正确命题的序号是A.① B.②和③C.③和④ D.①和④8.函数与(且)在同一坐标系中的图象可能是()A. B.C. D.9.缪天荣,浙江人,著名眼科专家、我国眼视光学的开拓者.上世纪年代,我国使用“国际标准视力表”检测视力,采用“小数记录法”记录视力数据,缪天荣发现其中存在不少缺陷.经过年苦心研究,年,他成功研制出“对数视力表”及“分记录法”.这是一种既符合视力生理又便于统计和计算的视力检测系统,使中国的眼视光学研究站在了世界的巅峰.“分记录法”将视力和视角(单位:)设定为对数关系:.如图,标准对数视力表中最大视标的视角为,则对应的视力为.若小明能看清的某行视标的大小是最大视标的(相应的视角为),取,则其视力用“分记录法”记录()A. B.C. D.10.下列函数满足在定义域上为减函数且为奇函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数最小正周期是________________12.若正实数满足,则的最大值是________13.已知函数是幂函数,且在x∈(0,+∞)上递减,则实数m=________14.已知函数,若关于的不等式在[0,1]上有解,则实数的取值范围为______15.直线与平行,则的值为_________.16.计算______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)若函数在区间上存在零点,求正实数的取值范围;(2)若,,使得成立,求正实数的取值范围18.已知命题题.若p是q的充分条件,求实数a的取值范围.19.已知函数是定义在上的奇函数.(1)求实数的值;(2)解关于的不等式;(3)是否存在实数,使得函数在区间上的取值范围是?若存在,求出实数的取值范围;若不存在,请说明理由.20.如图,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求异面直线PB与CD所成角的余弦值;(Ⅲ)求点A到平面PCD的距离.21.在长方体ABCD-A1B1C1D1中,求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】因为,的终边(均不在轴上)关于轴对称,则,,然后利用诱导公式对应各个选项逐个判断即可求解【详解】因为,的终边(均不在轴上)关于轴对称,则,,选项,故正确,选项,故错误,选项,故错误,选项,故错误,故选:2、B【解析】首先将所给的不等式进行恒等变形,然后结合均值不等式即可求得其最小值,注意等号成立的条件.【详解】.,且,,当且仅当,即时,取得最小值2.的最小值为.故选B.【点睛】本题主要考查基本不等式求最值的方法,代数式的变形技巧,属于中等题.3、C【解析】先求得,然后结合函数的奇偶性、单调性、零点对选项进行分析,从而确定正确选项.【详解】,,所以,为偶函数,A选项正确.,B选项正确.,若在上单调递减,则,,由于,所以,所以的最大值为,的最大值为,C选项错误.当时,,,当时,,所以D选项正确.故选:C4、D【解析】根据三角形函数图像变换和解析式的关系即可求出变换后函数解析式,从而根据余弦函数图像的性质可求其对称轴.【详解】将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),则函数解析式变为;向左平移个单位得,由余弦函数的性质可知,其对称轴一定经过图象的最高点或最低点,故对称轴为:,k∈Z,k=1时,.故选:D.5、B【解析】将该正方体折叠,即可判断对立面的字.【详解】以红为底,折叠正方体后,即可判断出:西与红,楼与游,梦与记互为对面.故选:B【点睛】本题考查了空间正方体的结构特征,展开图与正方体关系,属于基础题.6、B【解析】先根据“关于x的不等式x2-2ax+a>0对x∈R恒成立”得0<a<1【详解】设p:“关于x的不等式x2-2ax+a>0对x∈R恒成立则由p知一元二次函数y=x2-2ax+a的图象开口向上,且所以对于一元二次方程x2-2ax+a=0必有解得0<a<1,由于0,1⊊所以“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立”故选:B.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对的集合与p对应集合互不包含7、A【解析】结合直线与平面垂直的性质和平行判定以及平面与平面的位置关系,逐项分析,即可.【详解】①选项成立,结合直线与平面垂直的性质,即可;②选项,m可能属于,故错误;③选项,m,n可能异面,故错误;④选项,该两平面可能相交,故错误,故选A.【点睛】本题考查了直线与平面垂直的性质,考查了平面与平面的位置关系,难度中等.8、B【解析】分析一次函数的单调性,可判断AD选项,然后由指数函数的单调性求得的范围,结合直线与轴的交点与点的位置关系可得出合适的选项.【详解】因为一次函数为直线,且函数单调递增,排除AD选项.对于B选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的上方,合乎题意;对于C选项,指数函数单调递减,则,可得,此时,一次函数单调递增,且直线与轴的交点位于点的下方,不合乎题意.故选:B.9、C【解析】将代入,求出的值,即可得解.【详解】将代入函数解析式可得.故选:C.10、C【解析】根据各个基本初等函数的性质,结合函数变换的性质判断即可【详解】对A,为偶函数,故A错误;对B,为偶函数,故B错误;对C,在定义域上为减函数且为奇函数,故C正确;对D,在和上分别单调递减,故D错误;故选:C【点睛】本题主要考查了常见基本初等函数的性质,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据三角函数周期计算公式得出结果.【详解】函数的最小正周期是故答案为:12、4【解析】由基本不等式及正实数、满足,可得的最大值.【详解】由基本不等式,可得正实数、满足,,可得,当且仅当时等号成立,故的最大值为,故答案为:4.13、2【解析】由幂函数的定义可得m2-m-1=1,得出m=2或m=-1,代入验证即可.【详解】是幂函数,根据幂函数的定义和性质,得m2-m-1=1解得m=2或m=-1,当m=2时,f(x)=x-3在(0,+∞)上是减函数,符合题意;当m=-1时,f(x)=x0=1在(0,+∞)上不是减函数,所以m=2故答案为:2【点睛】本题考查了幂函数的定义,考查了理解辨析能力和计算能力,属于基础题目.14、【解析】不等式在[0,1]上有解等价于,令,则.【详解】由在[0,1]上有解,可得,即令,则,因为,所以,则当,即时,,即,故实数的取值范围是故答案为【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.15、【解析】根据两直线平行得出实数满足的等式与不等式,解出即可.【详解】由于直线与平行,则,解得.故答案为:.【点睛】本题考查利用两直线平行求参数,考查运算求解能力,属于基础题.16、11【解析】进行分数指数幂和对数式的运算即可【详解】原式故答案为11【点睛】本题考查对数式和分数指数幂的运算,熟记运算性质,准确计算是关键,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)结合函数的单调性及零点存在定理可得结论;(2)由题意可得在,上,,由函数的单调性求得最值,解不等式可得所求范围【小问1详解】函数,因为在区间上单调递减,又,所以在区间上单调递减,所以在区间上单调递减,若在区间上存在零点,则.【小问2详解】存在,,,使得成立,等价为在,上,由在,递增,可得的最小值为,又,所以在,递减,可得的最大值为,由,解得,所以;综上可得,的范围是18、【解析】设命题对应的集合为,命题对应的集合为,由是,由,得,即是使,对分类讨论可得.【详解】解:由,得,设命题对应的集合为设命题对应的集合为,是由,得,若时,,,则显然成立;若时,,则,综上:.【点睛】本题考查根据充分条件求参数的取值范围,不等式的解法,属于基础题.19、(1)1(2)(3)存在,【解析】(1)根据求解并检验即可;(2)先证明函数单调性得在上为增函数,再根据奇偶性与单调性解不等式即可;(3)根据题意,将问题方程有两个不相等的实数根,再利用换元法,结合二次方程根的关系求解即可.【小问1详解】解:因为是定义在上的奇函数,所以,即,得.此时,,满足.所以【小问2详解】解:由(1)知,,且,则.∵,∴,,∴,即,故在上增函数∴原不等式可化为,即∴,∴∴,∴原不等式的解集为【小问3详解】解:设存在实数,使得函数在区间上的取值范围是,则,即,∴方程,即有两个不相等的实数根∴方程有两个不相等的实数根令,则,故方程有两个不相等的正根故,解得∴存在实数,使得函数在区间上的取值范围是,其中的取值范围为.20、(1)同解析(2)异面直线PB与CD所成的角的余弦值为.(3)点A到平面PCD的距离d=【解析】解法一:(Ⅰ)证明:在△PAD卡中PA=PD,O为AD中点,所以PO⊥AD.又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO平面PAD,所以PO⊥平面ABCD.(Ⅱ)连结BO,在直角梯形ABCD中,BC∥AD,AD=2AB=2BC,有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,所以OB∥DC.由(Ⅰ)知PO⊥OB,∠PBO为锐角,所以∠PBO是异面直线PB与CD所成的角.因AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,所以OB=,在Rt△POA中,因为AP=,AO=1,所以OP=1,在Rt△PBO中,PB=,cos∠PBO=,所以异面直线PB与CD所成的角的余弦值为.(Ⅲ)由(Ⅱ)得CD=OB=,在Rt△POC中,PC=,所以PC=CD=DP,S△PCD=·2=.又S△=设点A到平面PCD的距离h,由VP-ACD=VA-PCD,得S△ACD·OP=S△PCD·h,即×1×1=××h,解得h=.解法二:(Ⅰ)同解法一,(Ⅱ)以O为坐标原点,的方向分别为x轴、y轴、z轴的正方向,建立空间直角坐标系O-xyz.则A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1).所以=(-1,1,0),=(t,-1,-1),∞〈、〉=,所以异面直线PB与CD所成的角的余弦值为,(Ⅲ)设平面PCD的法向量为n=(x0,y0,x0),由(Ⅱ)知=(-1,0,1),=(-1,1,0),则n·=0,所以-x0+x0=0,n·=0,-x0+y0=0,即x0=y0=x0,取x0=1,得平面的一个法向量为n=(1,1,1).又=(1,1,0).从而点A到平面PCD的距离d=21、(1)见解析;(2)见解析【解析】(1)推导出AB∥A1B1,由此能证明AB∥平面A1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 富士康生产安全培训课件
- 家长防控培训课件
- 家长委员会家长培训课件
- 医务人员职业暴露标准防护与应急处置实务操作指南
- 2026年家政钟点工合同
- 房屋买卖合同2026年提前解约协议
- 2026年宠物保险理赔服务合同协议
- 2026年食材配送服务合同书
- 2026年文化传播发行合同协议
- 2026年家政人员劳动合同协议
- 2025新疆阿瓦提县招聘警务辅助人员120人参考笔试题库及答案解析
- 贵州国企招聘:2025贵州盐业(集团)有限责任公司贵阳分公司招聘考试题库附答案
- 股东会清算协议书
- 2026年湖南工程职业技术学院单招职业倾向性测试题库及完整答案详解1套
- 2025-2026学年秋季学期教学副校长工作述职报告
- 2025年春国家开放大学《消费者行为学》形考任务1-3+课程实训+案例讨论参考答案
- 第7课 月亮是从哪里来的 教学课件
- 2026年服装电商直播转化技巧
- 2025-2026学年小学美术浙美版(2024)二年级上册期末练习卷及答案
- 会所软装合同范本
- 冲刺2026中考-科学备考班会课件
评论
0/150
提交评论