2026届山西省阳泉市第十一中学高一上数学期末调研模拟试题含解析_第1页
2026届山西省阳泉市第十一中学高一上数学期末调研模拟试题含解析_第2页
2026届山西省阳泉市第十一中学高一上数学期末调研模拟试题含解析_第3页
2026届山西省阳泉市第十一中学高一上数学期末调研模拟试题含解析_第4页
2026届山西省阳泉市第十一中学高一上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山西省阳泉市第十一中学高一上数学期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线与平行,则实数的取值是A.-1或2 B.0或1C.-1 D.22.下列函数中,既是奇函数又在上有零点的是A. B.C D.3.已知,则函数与函数的图象可能是()A. B.C. D.4.将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递减 B.在区间上单调递增C.在区间上单调递减 D.在区间上单调递增5.若函数满足,,则下列判断错误的是()A. B.C.图象的对称轴为直线 D.f(x)的最小值为-16.已知集合,,若,则的子集个数为A.14 B.15C.16 D.327.函数在区间上的图象可能是()A. B.C. D.8.已知实数a、b,满足,,则关于a、b下列判断正确的是()A.a<b<2 B.b<a<2C.2<a<b D.2<b<a9.下列四组函数中,表示同一函数的一组是()A., B.,C., D.,10.下列不等关系中正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则________.12.已知函数,若方程有4个不同的实数根,则的取值范围是____13.已知,均为锐角,,,则的值为______14.若,且,则的值为__________15.若函数在上单调递增,则的取值范围是__________16.在中,,则等于______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,该函数图象一条对称轴与其相邻的一个对称中心的距离为(1)求函数的对称轴和对称中心;(2)求在上的单调递增区间18.已知函数,直线是函数f(x)的图象的一条对称轴.(1)求函数f(x)的单调递增区间;(2)已知函数y=g(x)的图象是由y=f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移个单位长度得到的,若求的值.19.已知函数.(1)判断的奇偶性并证明;(2)用函数单调性的定义证明在区间上单调递增;(3)若对,不等式恒成立,求实数的取值范围.20.已知集合,集合.(1)当时,求;(2)若,求实数的取值范围.21.已知,.(1)求的值;(2)求的值;(3)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】因为两直线的斜率都存在,由与平行得,当时,两直线重合,,故选C.2、D【解析】选项中的函数均为奇函数,其中函数与函数在上没有零点,所以选项不合题意,中函数为偶函数,不合题意;中函数的一个零点为,符合题意,故选D.3、D【解析】根据对数关系得,所以函数与函数的单调性相同即可得到选项.【详解】,所以,,不为1的情况下:,函数与函数的单调性相同,ABC均不满足,D满足题意.故选:D【点睛】此题考查函数图象的辨析,根据已知条件找出等量关系或不等关系,分析出函数的单调性得解.4、D【解析】由条件根据函数的图象变换规律得到变换之后的函数解析式,再根据正弦函数的单调性判断即可【详解】解:将函数的图象向右平移个单位长度,得到,若,则,因为在上不单调,故在上不单调,故A、B错误;若,则,因为在上单调递增,故在上单调递增,故C错误,D正确;故选:D5、C【解析】根据已知求出,再利用二次函数的性质判断得解.【详解】解:由题得,解得,,所以,因为,所以选项A正确;所以,所以选项B正确;因为,所以选项D正确;因为的对称轴为,所以选项C错误故选:C6、C【解析】根据集合的并集的概念得到,集合的子集个数有个,即16个故答案为C7、C【解析】首先判断函数的奇偶性,再根据特殊值判断即可;【详解】解:∵,∴是偶函数,函数图象关于轴对称,排除A,B选项;∵,∴在上不单调,排除D选项故选:C8、D【解析】先根据判断a接近2,进一步对a进行放缩,,进而通过对数运算性质和基本不等式可以判断a>2;根据b的结构,构造函数,得出函数的单调性和零点,进而得到a,b的大小关系,最后再判断b和2的大小关系,最终得到答案.【详解】.构造函数:,易知函数是R上的减函数,且,由,可知:,又,∴,则a>b.又∵,∴a>b>2故选:D.【点睛】对数函数式比较大小通常借助中间量,除了0和1之外,其它的中间量需要根据题目进行分析,中间会用到指对数的运算性质和放缩法;另外,构造函数利用函数的单调性比较大小是比较常用的一种方法,需要我们对式子的结构进行仔细分析,平常注意归纳总结.9、C【解析】分析每个选项中两个函数的定义域,并化简函数解析式,利用函数相等的概念可得出合适的选项.【详解】对于A选项,函数的定义域为,函数的定义域为,A选项中的两个函数不相等;对于B选项,函数的定义域为,函数的定义域为,B选项中的两个函数不相等;对于C选项,函数、的定义域均为,且,C选项中的两个函数相等;对于D选项,对于函数,有,解得,所以,函数的定义域为,函数的定义域为,D选项中的两个函数不相等.故选:C.10、C【解析】对于A,作差变形,借助对数函数单调性判断;对于C,利用均值不等式计算即可判断;对于B,D,根据不等式的性质及对数函数单调性判断作答.【详解】对于A,,而函数在单调递增,显然,则,A不正确;对于B,因为,所以,故,B不正确;对于C,显然,,,C正确;对于D,因为,所以,即,D不正确.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将未知角化为已知角,结合三角恒等变换公式化简即可.【详解】解:因为,所以.故答案为:.【点睛】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.12、【解析】先画出函数的图象,把方程有4个不同的实数根转化为函数的图象与有四个不同的交点,结合对数函数和二次函数的性质,即可求解.【详解】由题意,函数,要先画出函数的图象,如图所示,又由方程有4个不同的实数根,即函数的图象与有四个不同的交点,可得,且,则=,因为,则,所以.故答案为.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把方程有4个不同的实数根,转化为两个函数的有四个交点,结合对数函数与二次函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.13、【解析】直接利用两角的和的正切关系式,即可求出结果【详解】已知,均锐角,,,则,所以:,故故答案为【点睛】本题主要考查了三角函数关系式的恒等变换,以及两角和的正切关系式的应用,其中解答中熟记两角和的正切的公式,准确运算是解答的关键,主要考查学生的运算能力和转化能力,属于基础题型14、【解析】∵且,∴,∴,∴cosα+sinα=0,或cosα−sinα=(不合题意,舍去),∴,故答案为−1.15、【解析】由题意根据函数在区间上为增函数及分段函数的特征,可求得的取值范围【详解】∵函数在上单调递增,∴函数在区间上为增函数,∴,解得,∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根据函数在上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题16、【解析】由题;,又,代入得:考点:三角函数的公式变形能力及求值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)对称轴为,;,(2)和【解析】(1)先把化简成一个角的三角函数形式,再整体代换法去求的对称轴和对称中心;(2)整体代换法去求在上的单调递增区间即可.【小问1详解】由题可知,由对称轴与其相邻的一个对称中心的距离为,得,解得,所以令,即,所以的对称轴为,;令,即,所以的对称中心为,【小问2详解】令∵,∴,由图可知,只需满足或,即或,∴在上的单调递增区间是和18、(1);(2)【解析】(1)首先化简函数,再根据是函数的一条对称轴,代入求,再求函数的单调递增区间;(2)先根据函数图象变换得到,并代入后,得,再利用角的变换求的值.【详解】(1),当时,,得,,,即,令,解得:,,函数的单调递增区间是;(2),,得,,,,【点睛】方法点睛:本题考查函数的图象变换,以及的性质,属于中档题型,的横坐标伸长(或缩短)到原来的倍,得到函数的解析式是,若向右(或左)平移()个单位,得到函数的解析式是或.19、(1)为奇函数,证明见解析(2)证明见解析(3)【解析】(1)求出函数的定义域,然后验证、之间的关系,即可证得函数为奇函数;(2)任取、,且,作差,因式分解后判断差值的符号,即可证得结论成立;(3)由参变量分离法可得出,令,求出函数在上的最大值,即可得出实数的取值范围.【小问1详解】证明:函数为奇函数,理由如下:函数的定义域为,,所以为奇函数.【小问2详解】证明:任取、,且,则,,,所以,,所以在区间上单调递增.【小问3详解】解:不等式在上恒成立等价于在上恒成立,令,因为,所以,则有在恒成立,令,,则,所以,所以实数的取值范围为.20、(1);(2).【解析】(1)先分别求出,然后根据集合的并集的概念求解出的结果;(2)根据得到,由此列出不等式组求解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论