版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级数学试卷一元一次不等式易错压轴解答题训练经典题目(含答案)一、一元一次不等式易错压轴解答题1.定义一种新运算“a*b”:当a≥b时,a*b=a+2b;当a<b时,a*b=a-2b.例如:3*(-4)=3+(-8)=-5,(-6)*12=-6-24=-30(1)填空:(-4)*3=________.(2)若(3x-4)*(x+6)=(3x-4)+2(x+6),则x的取值范围为________;(3)已知(3x-7)*(3-2x)<-6,求x的取值范围;(4)小明在计算(2x2-4x+8)*(x2+2x-2)时随意取了一个x的值进行计算,得出结果是-4,小丽告诉小明计算错了,问小丽是如何判断的.2.我市某中学计划购进若千个排球和足球如果购买20个排球和15个足球,一共需要花费2050元;如果购买10个排球和20个足球,--共需要花费1900元(1)求每个排球和每个足球的价格分别是多少元?(2)如果学校要购买排球和足球共50个,并且预算总费用不超过3210元,那么该学校至多能购买多少个足球?3.我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株.(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株.(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用为22080元.4.某公司装修需用A型板材240块、B型板材180块,A型板材规格是60cm×30cm,B型板材规格是40cm×30cm.现只能购得规格是150cm×30cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(如图是裁法一的裁剪示意图)裁法一裁法二裁法三A型板材块数120B型板材块数2mn设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.(1)上表中,m=________,n=________;(2)分别求出y与x和z与x的函数关系式;(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,并指出当x取何值时Q最小,此时按三种裁法各裁标准板材多少张?5.对非负有理数x“四舍五入”到个位的值记为<x>.即n为非负整数时,如果时,则<x>=n,例如:<0>=<0.48>=0;<0.64>=<1.493>=1;<2>=2;<3.52>=<4.48>=4;……尝试解决下列问题:(1)填空:①<3.49>=________;②如果<2a-1>=3,那么a的取值范围是________;(2)举例说明<x+y>=<x>+<y>不恒成立;(3)求满足<x>=的所有非负有理数x的值.6.某服装厂生产一种西装和领带,西装每套定价400元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20)(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算出此种方案的付款金额.7.
(1)①如果a-b<0,那么a________b;②如果a-b=0,那么a________b;③如果a-b>0,那么a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.8.有大小两种货车,3辆大货车与2辆小货车一次可以运货21吨,2辆大货车与4辆小货车一次可以运货22吨.(1)每辆大货车和每辆小货车一次各可以运货多少吨?(2)现有这两种货车共10辆,要求一次运货不低于35吨,则其中大货车至少多少辆?(用不等式解答)(3)日前有23吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满.已知每辆大货车一次运货租金为300元,每辆小货车一次运货租金为200元,请列出所有的运输方案井求出最少租金.9.某文具店购进A、B两种文具进行销售.若每个A种文具的进价比每个B种文具的进价少2元,且用900元正好可以购进50个A种文具和50个B种文具,(1)求每个A种文具和B种文具的进价分别为多少元?(2)若该文具店购进A种文具的数量比购进种文具的数量的3倍还少5个,购进两种文具的总数量不超过95个,每个A种文具的销售价格为12元,每个B种文具的销售价格为15元,则将购进的A、B两种文具全部售出后,可使总利润超过371元,通过计算求出该文具店购进A、B两种文具有哪几种方案?10.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过11800万元,地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校改扩建资金分别为每所300万元和500万元,请问共有哪几种改扩建方案?11.某商店需要购进甲、乙两种商品共180件其进价和售价如表:(注:获利=售价进价)(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.12.淮河汛期即将来临防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看河面及两岸河堤的情况•如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a,b满足:a是+1的整数部分,b是不等式2(x+1)>3的最小整数解.假定这一带淮河两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)a=________,b=________;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,求∠BCD:∠BAC的值.【参考答案】***试卷处理标记,请不要删除一、一元一次不等式易错压轴解答题1.(1)-10(2)x≥5(3)解:由题意知①或②,解①得:x>5;解②得:x<1;(4)解:若2x2-4x+8≥x2+2x-2,则原式=2x2-4x+8+2(x2+2x-解析:(1)-10(2)x≥5(3)解:由题意知①或②,解①得:x>5;解②得:x<1;(4)解:若2x2-4x+8≥x2+2x-2,则原式=2x2-4x+8+2(x2+2x-2)=2x2-4x+8+2x2+4x-4=4x2+4;若2x2-4x+8<x2+2x-2,则原式=2x2-4x+8-2(x2+2x-2)=2x2-4x+8-2x2-4x+4=-8x+12,∴小明计算错误.【解析】【解答】解:(1)(-4)*3=-4-2×3=-10,故答案为:-10;(2)∵(3x-4)*(x+6)=(3x-4)+2(x+6),∴3x-4≥x+6,解得:x≥5,故答案为:x≥5.【分析】(1)根据公式计算可得;(2)结合公式知3x-4≥x+6,解之可得;(3)由题意可得或
,分别求解可得;(4)计算(2x2-4x+8)*(x2+2x-2)时需要分情况讨论计算.2.(1)解:设每个排球的价格为x元,每个足球的价格为y元,依题意,得:{20x+15y=2050,10x+20y=1900,解得:{x=50,y=70.
答:每个排球的价格为50元,每解析:(1)解:设每个排球的价格为x元,每个足球的价格为y元,依题意,得:解得:
答:每个排球的价格为50元,每个足球的价格为70元(2)解:设学校购买m个足球,则购买个排球,依题意,得:解得:
又m为整数,的最大值为35.答:该学校至多能购买35个足球【解析】【分析】(1)抓住题中关键的已知条件:购买20个排球和15个足球,一共需要花费2050元;如果购买10个排球和20个足球,--共需要花费1900元,这就是题中的两个等量关系,再设未知数,列方程组,然后求出方程组的解。(2)此题的等量关系:购买排球的数量+购买足球的数量=50;不等关系为:预算总费用≤3210,设未知数,列不等式,再求出不等式的解集,就可求出结果。3.(1)解:设购买甲种树苗x株,乙种树苗y株,则列方程组{x+y=800,24x+30y=21000,解得{x=500,y=300.答:购买甲种树苗500株,乙种树苗30解析:(1)解:设购买甲种树苗株,乙种树苗株,则列方程组解得答:购买甲种树苗500株,乙种树苗300株.(2)解:设购买甲种树苗株,乙种树苗(800-)株.则列不等式≥88%×800.解得≤320.答:甲种树苗至多购买320株.(3)解:设甲种树苗购买株,使购买树苗的费用为22080元,则.解得=320.800-320=480.符合(2)的要求.答:购甲种树苗320株,乙种树苗480株时,总费用为22080元.【解析】【分析】(1)根据关键描述语“购买甲、乙两种树苗共800株,”和“购买两种树苗共用21000元”,列出方程组求解;(2)先找到关键描述语“这批树苗的成活率不低于88%”,进而找到所求的量的等量关系,列出不等式求出甲种树苗的取值范围;(3)设甲种树苗购买株,使购买树苗的费用为22080元,根据题意得到一元一次方程即可求解.4.(1)0;3(2)解:由题意得:共需用A型板材240块、B型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理得:y=120﹣12x,z=60﹣23x;(3)解:解析:(1)0;3(2)解:由题意得:共需用A型板材240块、B型板材180块,又∵满足x+2y=240,2x+3z=180,∴整理得:y=120﹣x,z=60﹣x;(3)解:由题意,得Q=x+y+z=x+120﹣x+60﹣x.整理,得Q=180﹣x.由题意,得,解得x≤90.[注:0≤x≤90且x是6的整数倍]由一次函数的性质可知,当x=90时,Q最小.由(2)知,y=120﹣x=120﹣×90=75,z=60﹣x=60﹣×90=0;故此时按三种裁法分别裁90张、75张、0张【解析】【解答】解:(1)按裁法二裁剪时,2块A型板材块的长为120cm,150﹣120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块B型板材块的长为160cm>150cm,所以无法裁出4块B型板;∴m=0,n=3;【分析】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150−120=30,所以无法裁出B型板,按裁法三裁剪时,3块B型板材块的长为120cm,120<150,而4块块B型板材块的长为160cm>150所以无法裁出4块B型板;(2)由题意得:共需用A型板材240块、B型板材180块,又因为满足x+2y=240,2x+3z=180,然后整理即可求出解析式;(3)根据Q=x+y+z,利用(2)的结论即可求出函数关系式,进而根据x的取值范围:0≤x≤90且x是6的整数倍,结合函数的性质即可解决问题.5.(1)3;74≤a<94(2)举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x+y>=<x>解析:(1)3;≤a<(2)举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x+y>=<x>+<y>不恒成立;(3)∵x≥0,为整数,设=k,k为整数,则x=,∴<>=k,∴k-≤<k+,k≥0,∴0≤k≤3,∴k=0,1,2,3,∴x=0,,,.【解析】【解答】(1)①<3.49>=3;②由题意得,2.5≤2a-1<3.5,解得:≤a<,故答案为3;≤a<。【分析】(1)①根据定义求解可得;②如果精确数是3,那么这个数应在2.5和3.5之间,包含2.5,不包含3.5,让2.5≤2a-1<3.5,解不等式即可;(2)举个反例即可;(3)为整数,设这个整数为k,这个整数应在k-和k+之间,包含k-,不包含k+,求得k的值即可求得所有非负有理数x的值.6.(1)(50x+7000);(45x+7200)(2)解:当x=30时方案①:方案②:答:此时按方案①购买较为合算.(3)解:用方案①买20套西装送20条领带解析:(1)(50x+7000);(45x+7200)(2)解:当时方案①:方案②:答:此时按方案①购买较为合算.(3)解:用方案①买20套西装送20条领带,再用方案②买10条领带.总价钱为所以可以【解析】【解答】解:(1)按方案①购买,需付款:400×20+(x-20)×50=元;按方案②购买,需付款:400×90%×20+50×90%×x=(元)【分析】(1)根据题意分别列出代数式,并整理;(2)把x=30代入(1)中两个代数式,计算结果得结论;(3)抓住省钱想方案.两种方案都选用.7.(1)<;=;>(2)解:比较a,b两数的大小,如果a与b的差大于0,则a大于b;a与b的差等于0,则a等于b;如果a与b的差小于0,则a小于b.(3)解:(3x2-3x+7)-(4x2-3x解析:(1)<;=;>(2)解:比较a,b两数的大小,如果a与b的差大于0,则a大于b;a与b的差等于0,则a等于b;如果a与b的差小于0,则a小于b.(3)解:(3x2-3x+7)-(4x2-3x+7)=-x2≤0,∴3x2-3x+7≤4x2-3x+7【解析】【解答】解:(1)①∵a-b<0∴a-b+b<0+b,∴a<b②∵a-b=0∴a=b;③∵a-b>0∴a-b+b>0+b
∴a>b故答案为:<,=,>【分析】(1)利用不等式的性质1,可分别得到a与b的大小关系。(2)利用(1)的方法,可以利用求差法比较a,b的大小。(3)利用求差法,求出两代数式的差,根据两代数式的差-x2的大小关系,可得到两代数式的大小。8.(1)解:设1辆大货车和1辆小货车一次可以分别运货x吨、y吨,根据题意,得:{3x+2y=212x+4y=22,解得:{x=5y=3,答:1辆大货车和1辆小货车一次可以分别运货解析:(1)解:设1辆大货车和1辆小货车一次可以分别运货x吨、y吨,根据题意,得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货5吨、3吨。(2)解:设安排m辆大货车,则小货车需要(10-m)辆,根据题意,得:5m+3(10-m)≥35,解得:m≥2.5,所以至少需要安排3辆大货车(3)解:设租大货车a辆,小货车b辆,由题意得5a+3b=23,∵a,b为非负整数,∴或,∴共有2中运输方案,方案1:租用4辆大货车,1辆小货车;方案2:租用1辆大货车,6辆小货车.方案1的租金:300×4+200=1400元,方案2的租金:300+200×6=1500元,∵1400<1500,∴最少租金为1400元。【解析】【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x吨、y吨,根据3辆大货车吨数+2辆小货车吨数=21,2辆大货车吨数+4辆小货车吨数=22,列出方程组,求出x、y的值即可.(2)设安排m辆大货车,则小货车需要(10-m)辆,根据一次运货不低于35吨,列出不等式,求出解集即可.(3)设租大货车a辆,小货车b辆,可得5a+3b=23,求出其非负整数解,即得运输方案,然后分别求出其租金比较即可.9.(1)解:设每个A种文具的进价为x元,每个B种文具的进价为y元,依题意,得:{y-x=250x+50y=900解得:{x=8y=10.答:每个A种文具的进价为8元,每个B种文具的进价解析:(1)解:设每个A种文具的进价为x元,每个B种文具的进价为y元,依题意,得:解得:.答:每个A种文具的进价为8元,每个B种文具的进价为10元;(2)解:设购进B种文具m个,则购进A种文具个,依题意,得:
解得:.∵为整数,∴或25,或70,∴该五金商店有两种进货方案:①购进A种文具67个,B种文具24个;②购进A种文具70个,B种文具25个.【解析】【分析】(1)具的进价比每个B种文具的进价少2元,且用900元正好可以购进50个A种文具和50个B种文具”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进B种文具m个,则购进A种文具个,根据购进两种文具的总数量不超过95个且销售两种文具的总利润超过371元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各进货方案.10.(1)解:设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得{2x+3y=78003x+y=5400,解得{x=1200y=1800,答:改扩建一所A类学校和解析:(1)解:设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)解:设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【解析】【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.11.(1)解:设甲种商品应购进x件,乙种商品应购进y件.根据题意得:{x+y=1806x+8y=1240,解得:{x=100y=80.答:甲种商品购进100件,乙种商品购进80件;解析:(1)解:设甲种商品应购进x件,乙种商品应购进y件.根据题意得:,解得:.答:甲种商品购进100件,乙种商品购进80件;(2)解:设甲种商品购进a件,则乙种商品购进件.根据题意得:.解不等式组,得:.∵a为非负整数,∴a取61,62,63∴相应取119,118,117方案一:甲种商品购进61件,乙种
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国高端化妆品品牌行业市场供需分析及投资发展评估规划报告
- 2025-2030中国高档白酒品牌价值提升与市场竞争策略研究分析报告
- 2025-2030中国镉业行业市场供需分析及投资评估规划分析研究报告
- 2025-2030中国钢铁行业结构调整与环保技术应用研究报告
- 初中英语听说能力提升教学策略
- 先进教育理念学习心得及实践报告
- 施工架吊装安全方案范本
- 中药拉丁文名称期末复习要点
- 基础会计实务核心知识点总结
- 完整公司部门职责标准手册
- DLT5196-2016 火力发电厂石灰石-石膏湿法烟气脱硫系统设计规程
- JTJ-324-2006疏浚与吹填工程质量检验标准-PDF解密
- (正式版)HGT 4339-2024 机械设备用涂料
- MOOC 高电压技术-西南交通大学 中国大学慕课答案
- 保险经济学第一章
- DB13-T1225-2010肥料pH值测定方法
- 活性炭生产工艺简介
- 现代数字信号处理课程回顾
- 国有企业招标采购相关法律法规与国有企业采购操作规范
- 户口本西语翻译模板
- 初中应用物理知识竞赛专题复习压强与浮力
评论
0/150
提交评论