版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、解答题1.如图,在平面直角坐标系中,四边形各顶点的坐标分别为,,,,现将四边形经过平移后得到四边形,点的对应点的坐标为.(1)请直接写点、、的坐标;(2)求四边形与四边形重叠部分的面积;(3)在轴上是否存在一点,连接、,使,若存在这样一点,求出点的坐标;若不存在,请说明理由.2.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;解:过点P作直线PH∥AB,所以∠A=∠APH,依据是;因为AB∥CD,PH∥AB,所以PH∥CD,依据是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)当点P,Q在线段EF上移动时(不包括E,F两点):①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.3.已知:AB∥CD,截线MN分别交AB、CD于点M、N.(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数;(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为(直接写出答案).4.已知,.点在上,点在上.(1)如图1中,、、的数量关系为:;(不需要证明);如图2中,、、的数量关系为:;(不需要证明)(2)如图3中,平分,平分,且,求的度数;(3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数.5.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分∠EAC?(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;(3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系.6.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.7.定义:对任意一个两位数,如果满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与的商记为例如:,对调个位数字与十位数字后得到新两位数是,新两位数与原两位数的和为,和与的商为,所以根据以上定义,完成下列问题:(1)填空:①下列两位数:,,中,“奇异数”有.②计算:..(2)如果一个“奇异数”的十位数字是,个位数字是,且请求出这个“奇异数”(3)如果一个“奇异数”的十位数字是,个位数字是,且满足,请直接写出满足条件的的值.8.我们已经学习了“乘方”运算,下面介绍一种新运算,即“对数”运算.定义:如果(a>0,a≠1,N>0),那么b叫做以a为底N的对数,记作.例如:因为,所以;因为,所以.根据“对数”运算的定义,回答下列问题:(1)填空:,.(2)如果,求m的值.(3)对于“对数”运算,小明同学认为有“(a>0,a≠1,M>0,N>0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正.9.我们知道,任意一个正整数都可以进行这样的分解:(,是正整数,且),在的所有这种分解中,如果,两因数之差的绝对值最小,我们就称是的最佳分解,并规定:.例如:可分解成,或,因为,所以是的最佳分解,所以(1)填空:;;(2)一个两位正整数(,,,为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为,求出所有的两位正整数;并求的最大值;(3)填空:①;②;10.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=_______,(5,1)=_______,(2,)=_______.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由:(4,5)+(4,6)=(4,30)11.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.12.阅读材料:求值:,解答:设,将等式两边同时乘2得:,将得:,即.请你类比此方法计算:.其中n为正整数13.已知A(0,a)、B(b,0),且+(b﹣4)2=0.(1)直接写出点A、B的坐标;(2)点C为x轴负半轴上一点满足S△ABC=15.①如图1,平移直线AB经过点C,交y轴于点E,求点E的坐标;②如图2,若点F(m,10)满足S△ACF=10,求m.(3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l上取两点G、H(点H在点G右侧),满足HB=8,GD=6.当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最大值.14.已知,点在与之间.(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:.(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系.15.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).(1)直接写出点E的坐标;D的坐标(3)点P是线段CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.16.如果x是一个有理数,我们定义x表示不小于x的最小整数.如3.24,2.62,55,66.由定义可知,任意一个有理数都能写成xxb的形式(0≤b<1).(1)直接写出x与x,x1的大小关系;提示1:用“不完全归纳法”推导x与x,x1的大小关系;提示2:用“代数推理”的方法推导x与x,x1的大小关系.(2)根据(1)中的结论解决下列问题:①直接写出满足3m74的m取值范围;②直接写出方程3.5n22n1的解..17.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于1,即S△MPQ=1,则称点M为线段PQ的“单位面积点”,解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(1,0).(1)在点A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,线段OP的“单位面积点”是;(2)已知点E(0,3),F(0,4),将线段OP沿y轴向上平移t(t>0)个单位长度,使得线段EF上存在线段OP的“单位面积点”,直接写出t的取值范围.(3)已知点Q(1,﹣2),H(0,﹣1),点M,N是线段PQ的两个“单位面积点”,点M在HQ的延长线上,若S△HMN≥S△PQN,求出点N纵坐标的取值范围.18.如图1,在直角坐标系中直线与、轴的交点分别为,,且满足.(1)求、的值;(2)若点的坐标为且,求的值;(3)如图2,点坐标是,若以2个单位/秒的速度向下平移,同时点以1个单位/秒的速度向左平移,平移时间是秒,若点落在内部(不包含三角形的边),求的取值范围.19.五一节前,某商店拟购进A、B两种品牌的电风扇进行销售,已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,商店拟用1000元购进这两种风扇(1000元刚好全部用完),为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?20.某企业用规格是170cm×40cm的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm).(1)求图中a、b的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计).①一共可裁剪出甲型板材张,乙型板材张;②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?21.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)ab产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.22.如图①,在平面直角坐标系中,点A在x轴上,直线OC上所有的点坐标,都是二元一次方程的解,直线AC上所有的点坐标,都是二元一次方程的解,过C作x轴的平行线,交y轴与点B.(1)求点A、B、C的坐标;(2)如图②,点M、N分别为线段BC,OA上的两个动点,点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,设运动时间为t秒,且0<t<4,试比较四边形MNAC的面积与四边形MNOB的面积的大小.23.一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为,所以2534是“7类诚勤数”.(1)请判断7441和5436是否为“诚勤数”并说明理由;(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值.24.对于不为0的一位数和一个两位数,将数放置于两位数之前,或者将数放置于两位数的十位数字与个位数字之间就可以得到两个新的三位数,将较大三位数减去较小三位数的差与15的商记为.例如:当,时,可以得到168,618.较大三位数减去较小三位数的差为,而,所以.(1)计算:.(2)若是一位数,是两位数,的十位数字为(,为自然数),个位数字为8,当时,求出所有可能的,的值.25.某治污公司决定购买10台污水处理设备.现有甲、乙两种型号的设备可供选择,其中每台的价格与月处理污水量如下表:甲型乙型价格(万元/台)xy处理污水量(吨/月)300260经调查:购买一台甲型设备比购买一台乙型设备多2万元,购买3台甲型设备比购买4台乙型设备少2万元.(1)求x,y的值;(2)如果治污公司购买污水处理设备的资金不超过91万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2750吨,为了节约资金,请为该公司设计一种最省钱的购买方案.26.某数码专营店销售A,B两种品牌智能手机,这两种手机的进价和售价如表所示:AB进价(元/部)33003700售价(元/部)38004300(1)该店销售记录显示,三月份销售A、B两种手机共34部,且销售A种手机的利润恰好是销售B种手机利润的2倍,求该店三月份售出A种手机和B种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共40部,要求购进B种手机数不低于A种手机数的,用于购买这两种手机的资金低于140000元,请通过计算设计所有可能的进货方案.27.阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[x].例如,[3.2]=3,[5]=5,[-2.1]=-3.那么,x=[x]+a,其中0≤a<1.例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.请你解决下列问题:(1)[4.8]=,[-6.5]=;(2)如果[x]=3,那么x的取值范围是;(3)如果[5x-2]=3x+1,那么x的值是;(4)如果x=[x]+a,其中0≤a<1,且4a=[x]+1,求x的值.28.在平面直角坐标系xOy中,已知点M(a,b).如果存在点N(a′,b′),满足a′=|a+b|,b′=|a﹣b|,则称点N为点M的“控变点”.(1)点A(﹣1,2)的“控变点”B的坐标为;(2)已知点C(m,﹣1)的“控变点”D的坐标为(4,n),求m,n的值;(3)长方形EFGH的顶点坐标分别为(1,1),(5,1),(5,4),(1,4).如果点P(x,﹣2x)的“控变点”Q在长方形EFGH的内部,直接写出x的取值范围.29.(发现问题)已知,求的值.方法一:先解方程组,得出,的值,再代入,求出的值.方法二:将①②,求出的值.(提出问题)怎样才能得到方法二呢?(分析问题)为了得到方法二,可以将①②,可得.令等式左边,比较系数可得,求得.(解决问题)(1)请你选择一种方法,求的值;(2)对于方程组利用方法二的思路,求的值;(迁移应用)(3)已知,求的范围.30.如图,在平面直角坐标系中,点的坐标分别为(1,0)、(-2,0),现同时将点分别向上平移2个单位,再向左平移1个单位,分别得到点的对应点,连接、、.(1)若在轴上存在点,连接,使S△ABM=S□ABDC,求出点的坐标;(2)若点在线段上运动,连接,求S=S△PCD+S△POB的取值范围;(3)若在直线上运动,请直接写出的数量关系.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1);(2);(3)存在,或【分析】(1)先确定平移的规则,然后根据平移的规则,求出点的坐标即可;(2)由平移的性质可知,重叠部分为平行四边形,且底边长为3,高为2,即可求出面积;(3)设点的坐标为,先求出平行四边形ABCD的面积,然后利用三角形的面积公式,即可求出b的值.【详解】解:(1)∵,,∴平移的规则为:向右平移2个单位,向上平移一个单位;∵,,,∴;(2)如图,延长交x轴于点E,过点做由平移可知,重叠部分为平行四边形,高为2,∴重叠部分的面积为(3)存在;设点的坐标为,∵,,∴,∴点的坐标为或.【点睛】本题考查了平移的性质,平行四边形的性质,坐标与图形,以及求阴影部分的面积,解题的关键是熟练掌握平移的性质进行解题.2.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.3.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【详解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:过点E作直线EH∥AB,∵DF平分∠CDE,∴设∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如图3,设MQ与CD交于点E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q与∠CPM的比值为,故答案为:.【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.4.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.【详解】解:(1)过E作EHAB,如图1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN−∠END.如图2,过F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF−∠FND=180°,∴2∠BME+2∠END+∠BMF−∠FND=180°,即2∠BMF+∠FND+∠BMF−∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.5.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;(2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD.【详解】解:(1)是,理由如下:要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;故答案为:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.6.(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.7.(1)①,②,;(2);(3)【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得;(2)由f(10m+n)=m+n,可求k的值,即可求b;(3)根据题意可列出等式,可求出x、y的值,即可求的值.【详解】解:(1)①∵对任意一个两位数a,如果a满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.∴“奇异数”为21;②f(15)=(15+51)÷11=6,f(10m+n)=(10m+n+10n+m)÷11=m+n;(2)∵f(10m+n)=m+n,且f(b)=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根据题意有∵∴∴∵x、y为正数,且x≠y∴x=6,y=5∴a=6×10+5=65故答案为:(1)①,②,;(2);(3)【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键.8.(1)1,4;(2)m=10;(3)不正确,改正见解析.【解析】试题分析:(1)根据新定义由61=6、34=81可得log66=1,log381=4;(2)根据定义知m﹣2=23,解之可得;(3)设ax=M,ay=N,则logaM=x、logaN=y,根据ax•ay=ax+y知ax+y=M•N,继而得logaMN=x+y,据此即可得证.试题解析:解:(1)∵61=6,34=81,∴log66=1,log381=4.故答案为:1,4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正确,设ax=M,ay=N,则logaM=x,logaN=y(a>0,a≠1,M、N均为正数).∵ax•ay=,∴=M•N,∴logaMN=x+y,即logaMN=logaM+logaN.点睛:本题考查了有理数和整式的混合运算,解题的关键是明确题意,可以利用新定义进行解答问题.9.(1),1;(2)两位正整数为39,28,17,的最大值为;(3)①;②【分析】(1)仿照样例进行计算即可;(2)由题设可以看出交换前原数的十位上数字为a,个位上数字为b,则原数可以表示为,交换后十位上数字为b,个位上数字为a,则交换后数字可以表示为,根据“交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54”确定出a与b的关系式,进而求出所有的两位数,然后求解确定出的最大值即可;(3)根据样例分解计算即可.【详解】解:(1)∵,∴;∵,∴,故答案为:;1;(2)由题意可得:交换后的数减去交换前的数的差为:,∴,∵,∴或或,∴t为39,28,17;∵39=1×39=3×13,∴;28=1×28=2×14=4×7,∴=;17=1×17,∴;∴的最大值.(3)①∵∴;②∴;故答案为:;【点睛】本题主要考查了有理数的运算,理解最佳分解的定义,并将其转化为有理数的运算是解题的关键.10.(1)3,0,-2(2)(4,30)【解析】分析:(1)根据阅读材料,应用规定的运算方式计算即可;(2)应用规定和同底数幂相乘的性质逆用变形计算即可.详解:(1)∵33=27∴(3,27)=3∵50=1∴(5,1)=1∵2-2=∴(2,)=-2(2)设(4,5)=x,(4,6)=y则,=6∴∴(4,30)=x+y∴(4,5)+(4,6)=(4,30)点睛:此题是一个规定计算的应用型的题目,关键是灵活应用规定的关系式计算,熟练记忆幂的相关性质.11.(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.12.(1);(2).【解析】【分析】设,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;同理即可得到所求式子的值.【详解】解:设,将等式两边同时乘2得:,将下式减去上式得:,即,则;设,两边同时乘3得:,得:,即,则.【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,解题的关键是明确题意,运用题目中的解题方法,运用类比的数学思想解答问题.13.(1)A(0,5),B(4,0);(2)①E(0,﹣);②﹣2或6;(3)24.【分析】(1)根据二次根式和偶次幂的非负性得出a,b解答即可;(2)①根据三角形的面积公式得出点C的坐标,根据平行线的性质解答即可;②延长CA交直线l于点H(a,10),过点H作HM⊥x轴于点M,根据三角形面积公式解答即可;(3)平移GH到DM,连接HM,根据三角形面积公式解答即可.【详解】解:(1)∵,且,(b﹣4)2≥0,∴a﹣5=0,b﹣4=0,解得:a=5,b=4,∴A(0,5),B(4,0);(2)①连接BE,如图1,∵,∴BC=6,∴C(﹣2,0),∵AB∥CE,∴S△ABC=S△ABE,∴,∴AE=,∴OE=,∴E(0,﹣);②∵F(m,10),∴点F在过点G(0,10)且平行于x轴的直线l上,延长CA交直线l于点H(a,10),过点H作HM⊥x轴于点M,则M(a,0),如图2,∵S△HCM=S△ACO+S梯形AOMH,∴,解得:a=2,∴H(2,10),∵S△AFC=S△CFH﹣S△AFH,∴,∴FH=4,∵H(2,10),∴F(﹣2,10)或(6,10),∴m=﹣2或6;(3)平移GH到DM,连接HM,则GD∥HM,GD=HM,如图3,四边形BDHG的面积=△BHM的面积,当BH⊥HM时,△BHM的面积最大,其最大值=.【点睛】本题主要考查图形与坐标及平移的性质,熟练掌握图形与坐标及平移的性质是解题的关键.14.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.15.(1)(-2,0);(-3,0);(2)z=x+y.证明见解析.【分析】(1)依据平移的性质可知BC∥x轴,BC=AE=3,然后依据点A和点C的坐标可得到点E和点D的坐标;(2过点P作PF∥BC交AB于点F,则PF∥AD,然后依据平行线的性质可得到∠BPF=∠CBP=x°,∠APF=∠DAP=y°,最后,再依据角的和差关系进行解答即可.【详解】解:(1)∵将三角形OAB沿x轴负方向平移,∴BC∥x轴,BC=AE=3.∵C(-3,2),A(1,0),∴E(-2,0),D(-3,0).故答案为:(-2,0);(-3,0).(2)z=x+y.证明如下:如图,过点P作PF∥BC交AB于点F,则PF∥AD,∴∠BPF=∠CBP=x°,∠APF=∠DAP=y°,∴∠BPA=∠BPF+∠APF=x°+y°=z°,∴z=x+y.【点睛】此题是几何变换综合题,主要考查了点的坐标的特点,平移得性质,平面坐标系中点的坐标和距离的关系,解本题的关键是由线段和部分点的坐标,得出其它点的坐标.16.(1);(2)①;②或.【分析】(1)提示1:先列出4个x的值,分别得出与的大小关系,再利用“不完全归纳法”即可得;提示2:先根据“”得出,再根据“”即可得;(2)①根据(1)的结论得出,据此解不等式组即可得;②先根据(1)的结论得出,再解不等式组求出n的取值范围,从而可得的取值范围,然后根据“为整数”可得出方程,由此解方程即可得.【详解】(1)提示1:当时,,则当时,,则当时,,则当时,,则由“不完全归纳法”可得:;提示2:,且;(2)①由(1)的结论得:解得;②由(1)的结论得:解得为整数则或解得或.【点睛】本题考查了一元一次不等式组的应用、解一元一次方程等知识点,理解新定义,正确求解不等式组是解题关键.17.(1),;(2)或;(3)见解析【分析】(1)分别根据三角形的面积计算△OPA,△DPB,△DPC,△OPD的面积即可;(2)分线段OP在线段EF下方和线段OP在线段EF上方分别求解;(3)画出图形,根据S△PQN=1,得到S△HMN≥,分当xN=0时,当xN=2时,分别结合S△HMN≥,得到不等式,求出N点纵坐标的范围.【详解】解:(1)S△OPA=,则点A是线段OP的“单位面积点”,S△OPB=,则点B不是线段OP的“单位面积点”,S△OPC=,则点C是线段OP的“单位面积点”,S△OPD=,则点D不是线段OP的“单位面积点”,(2)设点G是线段OP的“单位面积点”,则S△OPG=1,∵点E的坐标为(0,3),点F的坐标为(0,4),且点G在线段EF上,∴点G的横坐标为0,∵S△OPG=1,线段OP为y轴向上平移t(t>0)个单位长度,当为单位面积点时,当为单位面积点时,综上所述:1≤t≤2或5≤t≤6;(3)∵M,N是线段PQ的两个单位面积点,∴S△PQM=1,S△PQN=1,∵P(1,0),Q(1,-2),∴PQ=2,∴M,N的横坐标为0或2,∵点M在HQ的延长线上,∴点M的横坐标为xM=2,∵S△HMN≥S△PQN,∴S△HMN≥,当xN=0时,S△HMN=,则,∴或;当xN=2时,S△HMN=,则,∴或.【点睛】本题主要考查三角形的面积公式,并且能够理解单位面积点的定义,解题关键是找到单位面积点的轨迹进行求解.18.(1),;(2)或;(3)【分析】(1)根据非负数和为0,则每一个非负数都是0,即可求出a,b的值;(2)设直线AB与直线x=1交于点N,可得N(1,5),根据S△ABM=S△AMN−S△BMN,即可表示出S△ABM,从而列出m的方程.(3)根据题意知,临界状态是点P落在OA和AB上,分别求出此时t的值,即可得出范围.【详解】(1)∵,,∴,解得:,(2)设直线与直线交于,设∵a=−4,b=4,∴A(−4,0),B(0,4),设直线AB的函数解析式为:y=kx+b,代入得,解得∴直线AB的函数解析式为:y=x+4,代入x=1得∵∴=×5×|5−m|−×1×|5−m|=2|5−m|,∵∴∴或解得:或,(3)当点P在OA边上时,则2t=2,∴t=1,当点P在AB边上时,如图,过点P作PKx轴,AK⊥x轴交于K,则KP'=3−t,KA'=2t−2,∴3−t=2t−2,∴综上所述:.【点睛】本题主要考查了平移的性质、一般三角形面积的和差表示、以及非负数的性质等知识点,第(2)问中用绝对值来表示动点构成的线段长度是正确解题的关键.19.(1)A、B两种品牌电风扇每台的进价分别是100元、150元;(2)为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A种品牌的电风扇7台,购进B种品牌的电风扇2台.【分析】(1)设A种品牌电风扇每台进价元,B种品牌电风扇每台进价元,根据题意即可列出关于x、y的二元一次方程组,解出x、y即可.(2)设购进A品牌电风扇台,B品牌电风扇台,根据题意可列等式,由a和b都为整数即可求出a和b的值的几种可能,然后分别算出每一种情况的利润进行比较即可.【详解】(1)设A、B两种品牌电风扇每台的进价分别是x元、y元,由题意得:,解得:,答:A、B两种品牌电风扇每台的进价分别是100元、150元;(2)设购进A种品牌的电风扇a台,购进B种品牌的电风扇b台,由题意得:100a+150b=1000,其正整数解为:或或,当a=1,b=6时,利润=80×1+100×6=680(元),当a=4,b=4时,利润=80×4+100×4=720(元),当a=7,b=2时,利润=80×7+100×2=760(元),∵680<720<760,∴当a=7,b=2时,利润最大,答:为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A种品牌的电风扇7台,购进B种品牌的电风扇2台.【点睛】本题主要考查了二元一次方程组的实际应用,根据题意找出等量关系列出等式是解答本题的关键.20.(1)60,40;(2)①甲:85;乙50;②27【分析】(1)由图示列出关于a、b的二元一次方程组求解.(2)①根据已知和图示计算出两种裁法共产生甲型板材和乙型板材的张数;②根据竖式与横式礼品盒所需要的甲、乙两种型号板材的张数列出关于m、n的二元一次方程,求解,即可得出结论.【详解】解:(1)依题意,得:解得:a=60b=40答:a、b的值分别为60,40.(2)①一共可裁剪出甲型板材40×2+5=85(张)乙型板材40+5×2=50(张).故答案是:85,50;②设可做成m个竖式无盖装饰盒,n个横式无盖装饰盒.依题意得:,解得:m=4,n=23所以m+n=27,故答案为27个【点睛】本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a、b的值,根据图示列出算式以及关于m、n的二元一次方程.21.(1);(2)有4种方案:3台甲种机器,7台乙种机器;2台甲种机器,8台乙种机器;1台甲种机器,9台乙种机器;10台乙种机器.(3)最省钱的方案是购买2台甲种机器,8台乙种机器.【分析】(1)根据购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元这一条件建立一元二次方程组求解即可,(2)设买了x台甲种机器,根据该公司购买新机器的资金不超过216万元,建立一次不等式求解即可,(3)将两种机器生产的产量相加,使总产量不低于1890吨,求出x的取值范围,再分别求出对应的成本即可解题.【详解】(1)解:由题意得,解得,;(2)解:设买了x台甲种机器由题意得:30+18(10-x)≤216解得:x≤3∵x为非负整数∴x=0、1、2、3∴有4种方案:3台甲种机器,7台乙种机器;2台甲种机器,8台乙种机器;1台甲种机器,9台乙种机器;10台乙种机器.(3)解:由题意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤3∴整数x=2或3当x=2时购买费用=30×2+18×8=204(元)当x=3时购买费用=30×3+18×7=216(元)∴最省钱的方案是购买2台甲种机器,8台乙种机器.【点睛】本题考查了利润的实际应用,二元一次方程租的实际应用,一元一次不等式的实际应用,难度较大,认真审题,找到等量关系和不等关系并建立方程组和不等式组是解题关键.22.(1),,;(2)见解析.【分析】(1)令中的,求出相应的x的值,即可得到A的坐标,将方程和方程联立成方程组,解方程组即可得到C的坐标,进而可得到B的坐标;(2)分别利用梯形的面积公式表示出四边形MNAC的面积与四边形MNOB的面积,然后根据t的范围,分情况讨论即可.【详解】(1)令,则,解得,.解得.轴,∴点B的纵坐标与点C的纵坐标相同,;(2),,,.∵点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,,,,.当时,即时,;当时,即时,;当时,即时,.【点睛】本题主要考查二元一次方程及方程组的应用,数形结合并分情况讨论是解题的关键.23.(1)7441不是“诚勤数”;5463是“诚勤数”;(2)满足条件的A为:2314或5005或3250.【分析】(1)直接利用定义进行验证,即可得到答案;(2)由题意,设这个四位数的十位数是a,千位数是b,则个位数为(5a),百位数为(5b),然后根据13的倍数关系,以及“5类诚勤数”的定义,利用分类讨论的进行分析,即可得到答案.【详解】解:(1)在7441中,7+4=11,4+1=5,∵115,∴7441不是“诚勤数”;在5436中,∵5+4=6+3=9,∴5463是“诚勤数”;(2)根据题意,设这个四位数的十位数是a,千位数是b,则个位数为(5a),百位数为(5b),且,,∴这个四位数为:,∵,,∴,∵这个四位数是13的倍数,∴必须是13的倍数;∵,,∴在时,取到最大值60,∴可以为:2、15、28、41、54,∵,则是3的倍数,∴或,∴或;①当时,,∵,且a为非负整数,∴或,∴或,若,则,此时;若,则,此时;②当时,,∵,且a为非负整数,∴是3的倍数,且,∴,∴,则,∴;综合上述,满足条件的A为:2314或5005或3250.【点睛】本题考查了二元一次方程,新定义的运算法则,解题的关键是熟练掌握题意,正确列出二元一次方程,结合新定义,利用分类讨论的思想进行解题.24.(1)=6;(2)a=3,b=78或a=7,b=78.【分析】(1)=(217-127)÷15=6;(2)分1≤a<5,a=5,5<a≤9三种情形讨论计算.【详解】(1)当,时,可以得到217,127.较大三位数减去较小三位数的差为,而,∴.(2)当,时,可以得a50,5a0.三位数分别为100a+50,500+10a,当1≤a<5时,(500+10a)-(100a+50)=450-90a,而,∴=,∴=;当a=5时,(500+10a)-(100a+50)=0,而,∴=0,∴=0;当5<a≤9时,(100a+50)-(500+10a)=90a-450,而,∴=,∴=a-5;当,时,可以得900+10x+8,100x+98.∵,∴(900+10x+8)-(100x+98)=810-90x,而,∴=,,∴=;当1≤a<5时,5-a+27-3x=8,∴a+3x=24,∴当a=1时,x=(舍去),当a=2时,x=(舍去),当a=3时,x=7,当a=4时,x=(舍去),∴a=3,b=78;当a=5时,则27-3x=8,∴x=(舍去),当5<a≤9时,则a-5+27-3x=8,∴3x-a=14,∴当a=6时,x=(舍去),当a=7时,x=7,当a=8时,x=(舍去),当a=9时,x=(舍去),∴a=7,b=78;综上所述,a=3,b=78或a=7,b=78.【点睛】本题考查了新定义问题和二元一次方程的整数解,准确理解新定义的意义,灵活运用分类思想和枚举法是解题的关键.25.(1);(2)该公司有6种购买方案,方案1:购买10台乙型设备;方案2:购买1台甲型设备,9台乙型设备;方案3:购买2台甲型设备,8台乙型设备;方案4:购买3台甲型设备,7台乙型设备;方案5:购买4台甲型设备,6台乙型设备;方案6:购买5台甲型设备,5台乙型设备;(3)最省钱的购买方案为:购买4台甲型设备,6台乙型设备.【分析】(1)由一台A型设备的价格是x万元,一台乙型设备的价格是y万元,根据题意得等量关系:购买一台甲型设备-购买一台乙型设备=2万元,购买4台乙型设备-购买3台甲型设备=2万元,根据等量关系,列出方程组,再解即可;(2)设购买甲型设备m台,则购买乙型设备(10-m)台,由题意得不等关系:购买甲型设备的花费+购买乙型设备的花费≤91万元,根据不等关系列出不等式,再解即可;(3)由题意可得:甲型设备处理污水量+乙型设备处理污水量≥2750吨,根据不等关系,列出不等式,再解即可.【详解】(1)依题意,得:,解得:.(2)设该治污公司购进m台甲型设备,则购进(10﹣m)台乙型设备,依题意,得:10m+8(10﹣m)≤91,解得:m≤5.又∵m为非零整数,∴m=0,1,2,3,4,5,∴该公司有6种购买方案,方案1:购买10台乙型设备;方案2:购买1台甲型设备,9台乙型设备;方案3:购买2台甲型设备,8台乙型设备;方案4:购买3台甲型设备,7台乙型设备;方案5:购买4台甲型设备,6台乙型设备;方案6:购买5台甲型设备,5台乙型设备.(3)依题意,得:300m+260(10﹣m)≥2750,解得:m≥3,∴m=4,5.当m=4时,总费用为10×4+8×6=88(万元);当m=5时,总费用为10×5+8×5=90(万元).∵88<90,∴最省钱的购买方案为:购买4台甲型设备,6台乙型设备.【点睛】此题主要考查了二元一次方程组的应用和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汉字反切注音法与古代机械制造工艺演进的研究课题报告教学研究课题报告
- 城市绿化对空气质量改善的生态环境修复策略研究教学研究课题报告
- 高中生蓝球测试题及答案
- 初中历史人物研究方法与学生学习效果探讨教学研究课题报告
- 《基于大数据的环境监测网络构建与优化研究》教学研究课题报告
- 初中物理电路实验设计与创新教学模式探索教学研究课题报告
- 小学科学教学中STEM教育的课程整合课题报告教学研究课题报告
- 含锌废料再生资源利用项目规划设计方案
- 小学数字化评价与学生职业规划:生涯教育课程设计与实施研究教学研究课题报告
- 同好英雄答题题库及答案
- 外派培训协议合同
- 水电站资产转让合同范本模板
- 2026年浙江省新华书店集团有限公司招聘45人笔试参考题库及答案解析
- 脓毒症诊断与治疗临床规范指南(2025年版)
- 辽宁省沈阳市沈河区2024-2025学年七年级上学期期末考试英语试卷
- 2025中闽能源股份有限公司招聘考试笔试参考题库附答案解析
- 小学语文整本书阅读教学在培养学生批判性思维和创新精神方面的实践研究教学研究课题报告
- 2026高中政治学业水平考试知识点归纳总结(复习必背)
- 2025年中国储备粮管理集团有限公司招聘考试笔试全真题库及答案(陕西)
- DB11∕T 1831-2021 装配式建筑评价标准
- 人工智能导论第4版-课件 第7章-神经计算
评论
0/150
提交评论