版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、解答题1.如图,在平面直角坐标系中,点,,将线段AB进行平移,使点A刚好落在x轴的负半轴上,点B刚好落在y轴的负半轴上,A,B的对应点分别为,,连接交y轴于点C,交x轴于点D.(1)线段可以由线段AB经过怎样的平移得到?并写出,的坐标;(2)求四边形的面积;(3)P为y轴上的一动点(不与点C重合),请探究与的数量关系,给出结论并说明理由.2.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点.(1)若时,则___________;(2)试求出的度数(用含的代数式表示);(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示)3.已知,点在与之间.(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:.(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系.4.如图,直线,一副直角三角板中,.(1)若如图1摆放,当平分时,证明:平分.(2)若如图2摆放时,则(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.5.直线AB∥CD,点P为平面内一点,连接AP,CP.(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;(3)如图③,点P在直线CD下方,当∠BAK=∠BAP,∠DCK=∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由.6.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED=.(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数.7.阅读下面的文字,解答问题:大家知道是无理数,而无理是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是的小数部分,又例如:∵,即,∴的整数部分为2,小数部分为。请解答(1)的整数部分是______,小数部分是_______。(2)如果的小数部分为a,的整数部分为b,求的值。(3)已知x是的整数部分,y是其小数部分,直接写出的值.8.规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方,”(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作:“(﹣3)的圈4次方”.一般地,把个记作aⓝ,读作“a的圈n次方”(初步探究)(1)直接写出计算结果:2③,(﹣)③.(深入思考)2④我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(2)试一试,仿照上面的算式,将下列运算结果直接写成幂的形式.5⑥;(﹣)⑩.(3)猜想:有理数a(a≠0)的圈n(n≥3)次方写成幂的形式等于多少.(4)应用:求(-3)8×(-3)⑨-(﹣)9×(﹣)⑧9.我们已经学习了“乘方”运算,下面介绍一种新运算,即“对数”运算.定义:如果(a>0,a≠1,N>0),那么b叫做以a为底N的对数,记作.例如:因为,所以;因为,所以.根据“对数”运算的定义,回答下列问题:(1)填空:,.(2)如果,求m的值.(3)对于“对数”运算,小明同学认为有“(a>0,a≠1,M>0,N>0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正.10.对非负实数“四舍五入”到各位的值记为.即:当为非负整数时,如果,则;反之,当为非负整数时,如果,则.例如:,.(1)计算:;;(2)①求满足的实数的取值范围,②求满足的所有非负实数的值;(3)若关于的方程有正整数解,求非负实数的取值范围.11.如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A、B两点表示的数分别为___________,____________;(2)请你参照上面的方法:①把图3中的长方形进行剪裁,并拼成一个大正方形.在图3中画出裁剪线,并在图4的正方形网格中画出拼成的大正方形,该正方形的边长___________.(注:小正方形边长都为1,拼接不重叠也无空隙)②在①的基础上,参照图2的画法,在数轴上分别用点M、N表示数a以及.(图中标出必要线段的长)12.a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,现已知a1=,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…(1)求a2,a3,a4的值;(2)根据(1)的计算结果,请猜想并写出a2016•a2017•a2018的值;(3)计算:a33+a66+a99+…+a9999的值.13.如图①,在平面直角坐标系中,点,,其中,是16的算术平方根,,线段由线段平移所得,并且点与点A对应,点与点对应.(1)点A的坐标为;点的坐标为;点的坐标为;(2)如图②,是线段上不同于的任意一点,求证:;(3)如图③,若点满足,点是线段OA上一动点(与点、A不重合),连交于点,在点运动的过程中,是否总成立?请说明理由.14.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点.(1)当时,的度数是_______;(2)当,求的度数(用的代数式表示);(3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点运动到使时,请直接写出的度数.15.如图,在平面直角坐标系中,四边形各顶点的坐标分别为,,,,现将四边形经过平移后得到四边形,点的对应点的坐标为.(1)请直接写点、、的坐标;(2)求四边形与四边形重叠部分的面积;(3)在轴上是否存在一点,连接、,使,若存在这样一点,求出点的坐标;若不存在,请说明理由.16.使方程(组)与不等式(组)同时成立的末知数的值称为此方程(组)和不等式(组)的“理想解”.例:已知方程2x﹣3=1与不等式x+3>0,当x=2时,2x﹣3=2×2﹣3=1,x+3=2+3=5>0同时成立,则称x=2是方程2x﹣3=1与不等式x+3>0的“理想解”.(1)已知①,②2(x+3)<4,③<3,试判断方程2x+3=1的解是否是它们中某个不等式的“理想解”,写出过程;(2)若是方程x﹣2y=4与不等式的“理想解”,求x0+2y0的取值范围.17.在平面直角坐标系中,点,满足关系式.(1)求,的值;(2)若点满足的面积等于,求的值;(3)线段与轴交于点,动点从点出发,在轴上以每秒个单位长度的速度向下运动,动点从点出发,以每秒个单位长度的速度向右运动,问为何值时有,请直接写出的值.18.在平面直角坐标系中,,满足.(1)直接写出、的值:;;(2)如图1,若点满足的面积等于6,求的值;(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值.19.如图,和的度数满足方程组,且,.(1)用解方程的方法求和的度数;(2)求的度数.20.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?21.如图①,在平面直角坐标系中,点A在x轴上,直线OC上所有的点坐标,都是二元一次方程的解,直线AC上所有的点坐标,都是二元一次方程的解,过C作x轴的平行线,交y轴与点B.(1)求点A、B、C的坐标;(2)如图②,点M、N分别为线段BC,OA上的两个动点,点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,设运动时间为t秒,且0<t<4,试比较四边形MNAC的面积与四边形MNOB的面积的大小.22.在平面直角坐标系中,把线段先向右平移h个单位,再向下平移1个单位得到线段(点A对应点C),其中分别是第三象限与第二象限内的点.(1)若,求C点的坐标;(2)若,连接,过点B作的垂线l①判断直线l与x轴的位置关系,并说明理由;②已知E是直线l上一点,连接,且的最小值为1,若点B,D及点都是关于x,y的二元一次方程的解为坐标的点,试判断是正数、负数还是0?并说明理由.23.如图,在平面直角坐标系中,点为坐标原点,点的坐标为,点的坐标为,其中是二元一次方程组的解,过点作轴的平行线交轴于点.(1)求点的坐标;(2)动点从点出发,以每秒个单位长度的速度沿射线的方向运动,连接,设点的运动时间为秒,三角形的面积为,请用含的式子表示(不用写出相应的的取值范围);(3)在(2)的条件下,在动点从点出发的同时,动点从点出发以每秒个单位长度的速度沿线段的方向运动.过点作直线的垂线,点为垂足;过点作直线的垂线,点为垂足.当时,求的值.24.学校组织名同学和名教师参加校外学习交流活动现打算选租大、小两种客车,大客车载客量为人/辆,小客车载客量为人/辆(1)学校准备租用辆客车,有几种租车方案?(2)在(1)的条件下,若大客车租金为元/辆,小客车租金为元/辆,哪种租车方案最省钱?(3)学校临时增加名学生和名教师参加活动,每辆大客车有2名教师带队,每辆小客车至少有名教师带队.同学先坐满大客车,再依次坐满小客车,最后一辆小客车至少要有人,请你帮助设计租车方案25.如图,在平面直角坐标系中,已知两点,且a、b满足点在射线AO上(不与原点重合).将线段AB平移到DC,点D与点A对应,点C与点B对应,连接BC,直线AD交y轴于点E.请回答下列问题:(1)求A、B两点的坐标;(2)设三角形ABC面积为,若4<≤7,求m的取值范围;(3)设,请给出,满足的数量关系式,并说明理由.26.某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.(1)若现有A型板材150张,B型板材300张,可制作竖式和横式两种无盖箱子各多少个?(2)若该工厂准备用不超过24000元资金去购买A、B两种型号板材,制作竖式、横式箱子共100个,已知A型板材每张20元,B型板材每张60元,问最多可以制作竖式箱子多少个?(3)若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割的板材制作两种类型的箱子,要求竖式箱子不少于10个,且材料恰好用完,则最多可以制作竖式箱子多少个?27.阅读材料:形如的不等式,我们就称之为双连不等式.求解双连不等式的方法一,转化为不等式组求解,如;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得,然后同时除以2,得.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组;(2)利用不等式的性质解双连不等式;(3)已知,求的整数值.28.我们把关于x的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”.(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;①;②.(2)若关于x的组合是“有缘组合”,求a的取值范围;(3)若关于x的组合是“无缘组合”;求a的取值范围.29.已知A(0,a)、B(b,0),且+(b﹣4)2=0.(1)直接写出点A、B的坐标;(2)点C为x轴负半轴上一点满足S△ABC=15.①如图1,平移直线AB经过点C,交y轴于点E,求点E的坐标;②如图2,若点F(m,10)满足S△ACF=10,求m.(3)如图3,D为x轴上B点右侧的点,把点A沿y轴负半轴方向平移,过点A作x轴的平行线l,在直线l上取两点G、H(点H在点G右侧),满足HB=8,GD=6.当点A平移到某一位置时,四边形BDHG的面积有最大值,直接写出面积的最大值.30.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨.(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)向左平移4个单位,再向下平移6个单位,,;(2)24;(3)见解析【分析】(1)利用平移变换的性质解决问题即可.(2)利用分割法确定四边形的面积即可.(3)分两种情形:点在点的上方,点在点的下方,分别求解即可.【详解】解:(1)点,,又将线段进行平移,使点刚好落在轴的负半轴上,点刚好落在轴的负半轴上,线段是由线段向左平移4个单位,再向下平移6个单位得到,,.(2).(3)连接.,,的中点坐标为在轴上,.,轴,同法可证,,,,同法可证,,,,当点在点的下方时,,,,,当点在点的上方时,.【点睛】本题考查坐标与图形变化—平移,解题的关键是理解题意,学会有分割法求四边形的面积,学会用分类讨论的思想解决问题,属于中考常考题型.2.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n=20时,∠ABC=40°,过E作EF∥AB,则EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;当点B在点A右侧时,如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.3.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.4.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.5.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,进而得到∠AKC=∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,进而得到∠BAK﹣∠DCK=∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.6.(1)70°;(2),证明见解析;(3)122°【分析】(1)过作,根据平行线的性质得到,,即可求得;(2)过过作,根据平行线的性质得到,,即;(3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求.【详解】解:(1)过作,,,,,,故答案为:;(2).理由如下:过作,,,,,,,;(3),设,则,,,又,,,平分,,,,即,解得,,.【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.7.(1)3;﹣3;(2)4;(3)x﹣y=7﹣.【分析】(1)由3<<4可得答案;(2)由2<<3知a=﹣2,由6<<7知b=6,据此求解可得;(3)由2<<3知5<3+<6,据此得出x、y的值代入计算可得.【详解】(1)∵3<<4,∴的整数部分是3,小数部分是﹣3;故答案为3;﹣3.(2)∵2<<3,∴a=﹣2,∵6<<7,∴b=6,∴a+b﹣=﹣2+6﹣=4.(3)∵2<<3,∴5<3+<6,∴3+的整数部分为x=5,小数部分为y=3+﹣5=﹣2.则x﹣y=5﹣(﹣2)=5﹣+2=7﹣.【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小.8.(1),-2;(2)()4,(﹣2)8;(3);(4).【分析】(1)分别按公式进行计算即可;(2)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(3)结果前两个数相除为1,第三个数及后面的数变为,则aⓝ=a×()n-1;(4)将第二问的规律代入计算,注意运算顺序.【详解】解:(1)2③=2÷2÷2=,(﹣)③=﹣÷(﹣)÷(﹣)=﹣2;(2)5⑥=5×××××=()4,同理得;(﹣)⑩=(﹣2)8;(3)aⓝ=a×××…×;(4)(-3)8×(-3)⑨-(﹣)9×(﹣)⑧=(-3)8×()7-(﹣)9×(-2)6=-3-(-)3=-3+=.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.9.(1)1,4;(2)m=10;(3)不正确,改正见解析.【解析】试题分析:(1)根据新定义由61=6、34=81可得log66=1,log381=4;(2)根据定义知m﹣2=23,解之可得;(3)设ax=M,ay=N,则logaM=x、logaN=y,根据ax•ay=ax+y知ax+y=M•N,继而得logaMN=x+y,据此即可得证.试题解析:解:(1)∵61=6,34=81,∴log66=1,log381=4.故答案为:1,4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正确,设ax=M,ay=N,则logaM=x,logaN=y(a>0,a≠1,M、N均为正数).∵ax•ay=,∴=M•N,∴logaMN=x+y,即logaMN=logaM+logaN.点睛:本题考查了有理数和整式的混合运算,解题的关键是明确题意,可以利用新定义进行解答问题.10.(1)2,3(2)①②(3)【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数的取值范围;②根据新定义的运算规则和为整数,即可求出所有非负实数的值;(3)先解方程求得,再根据方程的解是正整数解,即可求出非负实数的取值范围.【详解】(1)2;3;(2)①∵∴解得;②∵∴解得∵为整数∴故所有非负实数的值有;(3)∵方程的解为正整数∴或2①当时,是方程的增根,舍去②当时,.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.11.(1),;(2)①图见解析,;②见解析【分析】(1)根据图1得到小正方形的对角线长,即可得出数轴上点A和点B表示的数(2)根据长方形的面积得正方形的面积,即可得到正方形的边长,再画出图象即可;(3)从原点开始画一个长是2,高是1的长方形,对角线长即是a,再用圆规以这个长度画弧,交数轴于点M,再把这个长方形向左平移3个单位,用同样的方法得到点N.【详解】(1)由图1知,小正方形的对角线长是,∴图2中点A表示的数是,点B表示的数是,故答案是:,;(2)①长方形的面积是5,拼成的正方形的面积也应该是5,∴正方形的边长是,如图所示:故答案是:;②如图所示:【点睛】本题考查无理数的表示方法,解题的关键是理解题意,模仿题目中给出的解题方法进行求解.12.(1)a2=2,a3=-1,a4=(2)a2016•a2017•a2018=-1(3)a33+a66+a99+…+a9999=-1【分析】(1)将a1=代入中即可求出a2,再将a2代入求出a3,同样求出a4即可.(2)从(1)的计算结果可以看出,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=,a2018=2然后计算a2016•a2017•a2018的值;(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,即可求出结果.【详解】(1)将a1=,代入,得;将a2=2,代入,得;将a3=-1,代入,得.(2)根据(1)的计算结果,从a1开始,每三个数一循环,而2016÷3=672,则a2016=-1,a2017=,a2018=2所以,a2016•a2017•a2018=(-1)××2=-1(3)观察可得a3、a6、a9、…a99,都等于-1,将-1代入,a33+a66+a99+…+a9999=(-1)3+(-1)6+(-1)9+…+(-1)99=(-1)+1+(-1)+…(-1)=-1【点睛】此类问题考查了数字类的变化规律,解题的关键是要严格根据定义进行解答,同时注意分析循环的规律.13.(1),,;(2)证明见解析;(3)成立,理由见解析【分析】(1)根据算术平方根、立方根得、;再根据直角坐标系、平移的性质分析,即可得到答案;(2)根据平移的性质,得;根据平行线性质,分别推导得,,从而完成证明;(3)结合题意,根据平行线的性质,推导得、;结合(2)的结论,通过计算即可完成证明.【详解】(1)连接∵是16的算术平方根∴∴∴∵∴∴∴∵线段由线段平移所得,并且点与点A对应,点与点对应∴,∴故答案为:,,;(2)∵线段由线段平移所得∴,∴∵∴∵∴∴(3)∵∴∵∴∵∴,即∵∴∴∵∴∵,∴由(2)的结论得:,∵,∴∴∵∴∴∴在点运动的过程中,总成立.【点睛】本题考查了算术平方根、立方根、平行线、平移、直角坐标系的知识;解题的关键是熟练掌握直角坐标系、平移、平行线的性质,从而完成求解.14.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行线的性质可得∠A+∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;(3)不变,∠ADB:∠APB=.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠A+∠ABN=90°,∴∠A+2∠DBN=90°,∴∠A+∠DBN=(∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.15.(1);(2);(3)存在,或【分析】(1)先确定平移的规则,然后根据平移的规则,求出点的坐标即可;(2)由平移的性质可知,重叠部分为平行四边形,且底边长为3,高为2,即可求出面积;(3)设点的坐标为,先求出平行四边形ABCD的面积,然后利用三角形的面积公式,即可求出b的值.【详解】解:(1)∵,,∴平移的规则为:向右平移2个单位,向上平移一个单位;∵,,,∴;(2)如图,延长交x轴于点E,过点做由平移可知,重叠部分为平行四边形,高为2,∴重叠部分的面积为(3)存在;设点的坐标为,∵,,∴,∴点的坐标为或.【点睛】本题考查了平移的性质,平行四边形的性质,坐标与图形,以及求阴影部分的面积,解题的关键是熟练掌握平移的性质进行解题.16.(1)2x+3=1的解是不等式<3的理想解,过程见解析;(2)2<x0+2y0<8【分析】(1)解方程2x+3=1的解为x=﹣1,分别代入三个不等式检验即可得到答案;(2)由方程x﹣2y=4得x0=2y0+4,代入不等式解得﹣<y0<1,再结合x0=2y0+4,通过计算即可得到答案.【详解】(1)∵2x+3=1∴x=﹣1,∵x﹣=﹣1﹣=﹣<∴方程2x+3=1的解不是不等式的理想解;∵2(x+3)=2(﹣1+3)=4,∴2x+3=1的解不是不等式2(x+3)<4的理想解;∵==﹣1<3,∴2x+3=1的解是不等式<3的理想解;(2)由方程x﹣2y=4得x0=2y0+4,代入不等式组,得;∴﹣<y0<1,∴﹣2<4y0<4,∵∴2<x0+2y0<8.【点睛】本题考查了一元一次不等式、一元一次方程、代数式、一元一次不等式组的知识;解题的关键是熟练掌握一元一次不等式、代数式的性质,从而完成求解.17.(1),;(2)或;(3)或【分析】(1)根据一个数的平方与绝对值均非负,且其和为0,则可得它们都为0,从而可求得a和b的值;(2)过点P作直线l垂直于x轴,延长交直线于点,设点坐标为,过作交直线于点,根据面积关系求出Q点坐标,再求出PQ的长度,即可求出n的值;(3)先根据求出C点坐标,再根据求出D点坐标,根据题意可得F点坐标,由得关于t的方程,求出t值即可.【详解】(1),,且,,(2)过作直线垂直于轴,延长交直线于点,设点坐标为,过作交直线于点,如图所示∵∴解得,点坐标为∵∴解得:或(3)当或时,有.如图,延长BA交x轴于点D,过A点作AG⊥x轴于点G,过B点作BN⊥x轴于点N,∵∴解得:∴∵∴解得:∵∴当运动t秒时,∴∵CE=t∴,∵∴解得:或.【点睛】本题主要考查三角形的面积,含绝对值方程解法,熟练掌握直角坐标系的知识,三角形的面积,梯形的面积等知识是解题的关键,难点在于对图形进行割补转化为易求面积的图形.18.(1),2;(2)或;(3)或2【分析】(1)由,求出和的值即可;(2)过点作直线轴,延长交于,设出点坐标,根据面积关系求出点坐标,再求出的长度,即可求出值;(3)先根据求出点坐标,再根据面积关系求出值即可.【详解】解:(1),,,,,故答案为,2;(2)如图1,过作直线垂直于轴,延长交直线于点,设的坐标为,过作交直线于点,连接,,,,解得,,,又点满足的面积等于6,,解得或;(3)如图2,延长交轴于,过作轴于,过作轴于,,,解得,,,,解得,,,,由题知,当秒时,,,,,,,,解得或2.【点睛】本题是三角形综合题,考查三角形的面积,熟练掌握直角坐标系的知识,三角形的面积,梯形面积等知识是解题的关键.19.(1),;(2)【分析】(1)把和当做未知数,利用加减消元法解二元一次方程组即可;(2)先证明AB∥EF,则可以得到CD∥AB,∠C+∠CAB=180°,求出∠CAB的度数即可求解.【详解】解:(1)用②+①得:,解得,把代入①解得;(2)∵∴AB∥EF,∵,∴CD∥AB,∴∠C+∠CAB=180°,∵∠CAB=∠EAC+∠BAE,AC⊥AE,∴∠CAE=90°,∴∠CAB=140°∴40°.【点睛】本题考查了平行线的判定和性质,解二元一次方程组,解答本题的关键是明确题意,利用数形结合的思想解答.20.快车每秒行米,慢车每秒行米.【分析】设快车每秒行米,慢车每秒行米,根据若两车同向而行,快车从追上慢车到完全离开慢车,所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,列出方程组,解方程组即可求得.【详解】设快车每秒行米,慢车每秒行米,根据题意得,解得答:快车每秒行米,慢车每秒行米.【点睛】本题考查了二元一次方程组的应用,根据题意列出方程组是解题的关键.21.(1),,;(2)见解析.【分析】(1)令中的,求出相应的x的值,即可得到A的坐标,将方程和方程联立成方程组,解方程组即可得到C的坐标,进而可得到B的坐标;(2)分别利用梯形的面积公式表示出四边形MNAC的面积与四边形MNOB的面积,然后根据t的范围,分情况讨论即可.【详解】(1)令,则,解得,.解得.轴,∴点B的纵坐标与点C的纵坐标相同,;(2),,,.∵点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,,,,.当时,即时,;当时,即时,;当时,即时,.【点睛】本题主要考查二元一次方程及方程组的应用,数形结合并分情况讨论是解题的关键.22.(1)(-1,-2);(2)①结论:直线l⊥x轴.证明见解析;②结论:(s-m)+(t-n)=0.证明见解析【分析】(1)利用非负数的性质求出a,b的值,可得结论.(2)①求出A,D的纵坐标,证明AD∥x轴,可得结论.②判断出D(m+1,n-1),利用待定系数法,构建方程组解决问题即可.【详解】解:(1),又,,,,,点先向右平移2个单位,再向下平移1个单位得到点,.(2)①结论:直线轴.理由:,,,向右平移个单位,再向下平移1个单位得到点,,,的纵坐标相同,轴,直线,直线轴.②结论:.理由:是直线上一点,连接,且的最小值为1,,点,及点都是关于,的二元一次方程的解为坐标的点,,①②得到,,③②得到,,,,.【点睛】本题考查坐标与图形变化-平移,非负数的性质,待定系数法等知识,解题的关键是熟练掌握平移变换的性质,学会利用参数解决问题,属于中考常考题型.23.(1);(2);(3)或4.【分析】(1)先求出是二元一次方程组的解,然后代入A、B的坐标即可解答;(2)先求出OC的长,分点P在线段OB上和OB的延长线上两种情况,分别利用三角形面积公式计算即可;(3)分两种情况解答:①当点P在线段OB上时,连接PQ,过点M作PM⊥AC交AC的延长线于M,可得OP=2CQ,构建方程解答即可;②当点P在BO的延长线上时,同理可解.【详解】解:(1)解二元一次方程组,得:∴A(6,7),B(-8,0);(2)①当点P在线段OB上时,BP=4t,OP=8-4t,∴②当点P在OB延长线上时,综上所述;(3)①当点P在线段OB上时,如图:连接PQ,过点M作PM⊥AC交AC的延长线于M,又;②当在线段延长线上时同理可得:.综上,满足题意t的值为或4.【点睛】本题主要考查了三角形的面积、二元一次方程组等知识点,学会用分类讨论的思想思考问题以及利用面积法解决线段之间的关系成为解答本题的关键.24.(1)有3种租车方案;(2)租5辆大客车,2辆小客车最省钱;(3)租用大客车2辆,小客车7辆;或租10辆小客车.【分析】(1)设租大客车x辆,根据题意可列出关于x的不等式,求得不等式的解集后,再根据x为整数即可确定租车方案;(2)依次计算(1)题中的租车方案,比较结果即可得出答案;(3)设租大客车x辆,小客车y辆,根据客车的座位数满足的条件可确定x、y满足的不等式组,进一步可确定x、y满足的方程,再由带队的老师数可确定x、y满足的不等式,二者结合即可确定租车方案.【详解】解:(1)由题意知:本次乘车共270+7=277(人).设租大客车x辆,则小客车(7-x)辆,根据题意,得,解得:,因为x为整数,且x≤7,所以x=5,6,7,即有3种租车方案.(2)方案一:当x=7,所租7辆皆为大客车时,租车费用为:7×400=2800(元),方案二:当x=6,所租6辆为大客车,1辆为小客车时,租车费用为:6×400+300=2700(元),方案三:当x=5,所租5辆为大客车,2辆为小客车时,租车费用为:5×400+300×2=2600(元),所以,租5辆大客车,2辆小客车最省钱.(3)乘车总人数为270+7+10+4=291(人),因为最后一辆小客车最少20人,则客车空位不能大于10个,所以客车的总座位数应满足:291≤座位数≤301.设租大客车x辆,小客车y辆,则291≤45x+30y≤301,即,∵x、y均为整数,∴3x+2y=20,即.∵每辆大客车有2名教师带队,每辆小客车至少有名教师带队,∴2x+y≤11.把代入上式,得,解得.又∵x为整数且是2的倍数,∴x=2,y=7或x=0,y=10.故租车方案为:租大客车2辆,小客车7辆;或租10辆小客车.【点睛】本题考查了不等式和不等式组的实际应用、二元一次方程的整数解等知识,正确理解题意,列出不等式和不等式组是解题的关键.25.(1);(2);(3)当点C在x轴的正半轴上时,;当点C在点A和点O之间时,,理由见解析.【分析】(1)由非负性可得,解方程组可求解a,b的值,即可求解;(2)由平移的性质可得AC=m-(-3)=m+3,OB=2,由三角形的面积公式可求m的取值范围;(3)由平移的性质可得AD∥BC.分两种情况:当点C在x轴的正半轴上时;当点C在点A和点O之间时.由平行线的性质可求解.【详解】解:(1)由题意可知解得所以(2)三角形的面积为由得4<≤7所以;(3)作OF//BC,当点C在x轴的正半轴上时,如图1,当点C在点A和点O之间时,如图2,.【点睛】本题是几何变换综合题,考查了非负性,二元一次方程组的解法,一元一次不等式组的解法,平移的性质等知识,灵活运用这些性质进行推理计算是本题的关键,要注意分类讨论.26.(1)可制作竖式无盖箱子30个,可制作横式无盖箱子60个;(2)最多可以制作竖式箱子50个;(3)最多可以制作竖式箱子45个【分析】(1)根据题意可以列出相应的二元一次方程组,再解方程组即可解答本题;(2)根据题意可以列出相应的不等式,从而可以求得最多可以制作竖式箱子多少个;(3)根据题意可以列出相应的二元一次方程,再根据a为整数和a≥10,即可解答本题.【详解】解:(1)设可制作竖式无盖箱子m个,可制作横式无盖箱子n个,依题意有,解得,故可制作竖式无盖箱子30个,可制作横式无盖箱子60个;(2)由题意可得,1个竖式箱子需要1个A型和4个B型,1个横式箱子需要2个A型和3个B型,设竖式箱子x个,则横式箱子(100-x)个,(20+4×60)x+(2×20+3×60)(100-x)≤24000,解得x≤50,故x的最大值是50,答:最多可以制作竖式箱子50个;(3)C型可以看成三列,每一列可以做成3个A型或1个B型,65个C型就有65×3=195列,∵材料恰好用完,∴最后A型的数量一定是3的倍数,设竖式a个,横式b个,∵1个竖式箱子需要1个A型和4个B型,1个横式箱子需要2个A型和3个B型,1个B型相当于3个A型,∴(1+4×3)a+(2+3×3)b=195×3,∴13a+11b=585,∵a、b均为整数,a≥10,∴或或或,故最多可以制作竖式箱子45个.【点睛】本题考查一元一次不等式的应用、二元一次方程(组)的应用,解答本题的关键是明确题意,利用方程和不等式的性质解答.27.(1)见解析;(2);(3)或【分析】(1),转化为不等式组;(2)根据方法二的步骤解答即可;(3)根据方法二的步骤解答,得出,即可得到结论.【详解】解:(1),转化为不等式组;(2),不等式的左、中、右同时减去3,得,同时除以,得;(3),不等式的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 军队安全培训的意义
- 慢性疼痛跨国医疗的个体化治疗策略
- 慢性疼痛临床试验设计的优化策略
- 工地安全培训计划及内容课件
- 公务员考试云南政审试题及答案
- 慢性气道疾病急性发作文化敏感性教育策略
- 慢性心衰合并肾功能不全负担与治疗策略政策
- 慢性呼吸疾病急性期机械通气策略优化
- 慢性光化性皮炎患者维生素D缺乏与补充策略
- 患者隐私权在知情同意中的保护策略
- 学院学生校外勤工助学管理办法
- 燃气蒸汽锅炉项目可行性研究报告环评用
- 初中手抄报历史文化活动计划
- 个人与团队管理-形考任务4(客观题10分)-国开-参考资料
- 资材部年度工作总结
- 《西游记》中考真题及典型模拟题训练(原卷版)
- GB/T 44934-2024电力储能用飞轮储能单元技术规范
- 机械类中职学业水平考试专业综合理论考试题库(含答案)
- 国家职业技术技能标准 6-05-04-01 制鞋工 2024年版
- 广数980TD操作手册
- 年度供应商审核计划表
评论
0/150
提交评论