2026年中考数学模拟试卷试题汇编-数据分析_第1页
2026年中考数学模拟试卷试题汇编-数据分析_第2页
2026年中考数学模拟试卷试题汇编-数据分析_第3页
2026年中考数学模拟试卷试题汇编-数据分析_第4页
2026年中考数学模拟试卷试题汇编-数据分析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页(共1页)2026年中考数学模拟试卷试题汇编——数据分析一.选择题(共10小题)1.若一组数据x1+1,x2+1,x3+1…xn+1的平均数为18,方差为2,则数据x1+2,x2+2,x3+2……,xn+2的平均数和方差分别是()A.18,2 B.19,3 C.19,2 D.20,42.若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0 B.2.5 C.3 D.53.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x4.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x与方差s2:甲乙丙丁平均数x(cm)561560561560方差s2(cm2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁5.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数 B.中位数 C.众数 D.方差6.某青年排球队12名队员的年龄情况如表:年龄1819202122人数14322则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,197.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()A.7环,7环 B.8环,7.5环 C.7环,7.5环 D.8环,6.5环8.甲、乙两名同学本学期五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的成绩比乙稳定 B.甲的最好成绩比乙高 C.甲的成绩的平均数比乙大 D.甲的成绩的中位数比乙大9.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35394244454850人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学 B.该班学生这次考试成绩的众数是45分 C.该班学生这次考试成绩的中位数是45分 D.该班学生这次考试成绩的平均数是45分10.某汽车从甲地以速度v1匀速行驶至乙地后,又从乙地以速度v2匀速返回甲地,则汽车在整个行驶过程中的平均速度为()A.v1+v2vC.v1+v2二.填空题(共5小题)11.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是.12.“植树节”时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是.13.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩.14.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为S甲2、S乙2,则S甲2S乙2.(填“>”“<”或“=”)15.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款元.三.解答题(共5小题)16.学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.17.某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试758090面试937068根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?18.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.19.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况.小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查.将调查内容分为四组:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.回答下列问题:(1)这次被抽查的学生共有人,扇形统计图中,“B组”所对应的圆心角的度数为;(2)补全条形统计图;(3)已知该中学共有学生2500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭?20.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲880.4乙93.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).

2026年中考数学模拟试卷试题汇编——答案一.选择题(共10小题)题号12345678910答案CCAABACADD一.选择题(共10小题)1.若一组数据x1+1,x2+1,x3+1…xn+1的平均数为18,方差为2,则数据x1+2,x2+2,x3+2……,xn+2的平均数和方差分别是()A.18,2 B.19,3 C.19,2 D.20,4【考点】方差;算术平均数.【专题】数据的收集与整理;数据分析观念.【答案】C【分析】各数据都加上一个数(或减去一个数)时,平均数也加或减这个数,据此可求出平均数;各数据都加上一个数(或减去一个数)时,方差不变,即可求出数据的方差.【解答】解:∵数据x1+1,x2+1,x3+1…xn+1的平均数为18,∴数据x1+2,x2+2,x3+2……,xn+2的平均数为18+1=19;∵数据x1+1,x2+1,x3+1…xn+1的方差是2,∴数据x1+2,x2+2,x3+2……,xn+2的方差是2;故选:C.【点评】此题考查了方差,解题时注意:数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数是本题的关键.2.若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0 B.2.5 C.3 D.5【考点】中位数;算术平均数.【答案】C【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【解答】解:(1)将这组数据从小到大的顺序排列为1,2,3,4,x,处于中间位置的数是3,∴中位数是3,平均数为(1+2+3+4+x)÷5,∴3=(1+2+3+4+x)÷5,解得x=5;符合排列顺序;(2)将这组数据从小到大的顺序排列后1,2,3,x,4,中位数是3,此时平均数是(1+2+3+4+x)÷5=3,解得x=5,不符合排列顺序;(3)将这组数据从小到大的顺序排列后1,x,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,不符合排列顺序;(4)将这组数据从小到大的顺序排列后x,1,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,符合排列顺序;(5)将这组数据从小到大的顺序排列后1,2,x,3,4,中位数,x,平均数(1+2+3+4+x)÷5=x,解得x=2.5,符合排列顺序;∴x的值为0、2.5或5.故选:C.【点评】本题考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两个数的平均数3.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x【考点】算术平均数.【专题】统计与概率;数据分析观念.【答案】A【分析】根据题意,可以判断x、y、z的大小关系,从而可以解答本题.【解答】解:由题意可得,若去掉一个最高分,平均分为x,则此时的x一定小于同时去掉一个最高分和一个最低分后的平均分为z,去掉一个最低分,平均分为y,则此时的y一定大于同时去掉一个最高分和一个最低分后的平均分为z,故y>z>x,故选:A.【点评】本题考查算术平均数,解答本题的关键是明确算术平均数的含义.4.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x与方差s2:甲乙丙丁平均数x(cm)561560561560方差s2(cm2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁【考点】方差;算术平均数.【答案】A【分析】根据方差和平均数的意义找出平均数大且方差小的运动员即可.【解答】解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S甲2=S乙2<S丙2<S丁2,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选:A.【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数 B.中位数 C.众数 D.方差【考点】统计量的选择.【专题】统计的应用.【答案】B【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【解答】解:11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B.【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.6.某青年排球队12名队员的年龄情况如表:年龄1819202122人数14322则这个队队员年龄的众数和中位数是()A.19,20 B.19,19 C.19,20.5 D.20,19【考点】众数;中位数.【答案】A【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【解答】解:数据19出现了四次最多为众数;20和20处在第6位和第7位,其平均数是20,所以中位数是20.所以本题这组数据的中位数是20,众数是19.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.7.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()A.7环,7环 B.8环,7.5环 C.7环,7.5环 D.8环,6.5环【考点】众数;条形统计图;中位数.【专题】图表型.【答案】C【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,7环,故众数是7(环);因图中是按从小到大的顺序排列的,最中间的环数是7(环)、8(环),故中位数是7.5(环).故选:C.【点评】本题考查的是众数和中位数的定义.要注意,当所给数据有单位时,所求得的众数和中位数与原数据的单位相同,不要漏单位.8.甲、乙两名同学本学期五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的成绩比乙稳定 B.甲的最好成绩比乙高 C.甲的成绩的平均数比乙大 D.甲的成绩的中位数比乙大【考点】方差;算术平均数;中位数.【专题】统计的应用.【答案】A【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为15×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为15×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A.【点评】本题考查了方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数.9.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:成绩(分)35394244454850人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学 B.该班学生这次考试成绩的众数是45分 C.该班学生这次考试成绩的中位数是45分 D.该班学生这次考试成绩的平均数是45分【考点】众数;统计表;加权平均数;中位数.【答案】D【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:45+452=平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=故错误的为D.故选:D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.10.某汽车从甲地以速度v1匀速行驶至乙地后,又从乙地以速度v2匀速返回甲地,则汽车在整个行驶过程中的平均速度为()A.v1+v2vC.v1+v2【考点】算术平均数.【专题】计算题;应用意识.【答案】D【分析】由题意知,设两地距离为S,从甲地行驶至乙地的时间为T1,从乙地返回甲地的时间为T2,则关键时间的计算公式求得T1及T2,再根据平均速度的计算公式即可求得平均速度.【解答】解:设两地距离为S,从甲地行驶至乙地的时间为T1,从乙地返回甲地的时间为T2,则有T1=Sv1,T∴平均速度=2S故选:D.【点评】本题考查了平均数实际中的运用.平均速度=总路程÷总时间.二.填空题(共5小题)11.在2015年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数是26.【考点】中位数;折线统计图.【答案】见试题解答内容【分析】根据中位数的定义,即可解答.【解答】解:把这组数据从小到大排列,最中间两个数的平均数是(26+26)÷2=26,则中位数是26.故答案为:26.【点评】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).12.“植树节”时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是5.【考点】算术平均数;众数.【答案】见试题解答内容【分析】首先根据众数为5得出x=5,然后根据平均数的概念求解.【解答】解:∵这组数据的众数是5,∴x=5,则平均数为:5+7+3+5+6+46=故答案为:5.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.13.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩90分.【考点】加权平均数.【答案】见试题解答内容【分析】根据加权平均数的计算公式求解即可.【解答】解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,95这三个数的平均数,对平均数的理解不正确.14.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如图所示,甲、乙两选手成绩的方差分别记为S甲2、S乙2,则S甲2>S乙2.(填“>”“<”或“=”)【考点】方差.【专题】统计的应用;数据分析观念.【答案】>.【分析】直接根据图表数据的波动大小进行判断即可.【解答】解:图表数据可知,甲数据偏离平均数数据较大,乙数据偏离平均数数据较小,即甲的波动性较大,即方差大,故答案为:>.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.如图统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款31.2元.【考点】加权平均数;扇形统计图.【专题】压轴题;图表型.【答案】见试题解答内容【分析】根据扇形统计图的定义,各部分占总体的百分比之和为1,用捐的具体钱数乘以所占的百分比,再相加,即可得该班同学平均每人捐款数.【解答】解:该班同学平均每人捐款:100×12%+50×16%+20×44%+10×20%+5×8%=31.2(元).故答案为:31.2.【点评】本题主要考查扇形统计图的定义,加权平均数等知识,解题的关键是利用加权平均数解决问题.三.解答题(共5小题)16.学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.【考点】加权平均数;算术平均数.【答案】见试题解答内容【分析】(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后根据计算结果,结果大的胜出.【解答】解:(1)x乙=(73+80+82+83)÷4=∵80.25>79.5,∴应选派甲;(2)x甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=x乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=∵79.5<80.4,∴应选派乙.【点评】此题考查了算术平均数与加权平均数,解题的关键是:熟记计算算术平均数与加权平均数公式.17.某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试758090面试937068根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?【考点】加权平均数;统计表;扇形统计图;算术平均数.【答案】见试题解答内容【分析】(1)根据百分数乘法的意义,分别用200乘以三人的得票率,求出三人民主评议的得分各是多少即可.(2)首先根据加权平均数的计算方法列式计算,分别求出三人的得分各是多少;然后比较大小,判断出三人中谁的得分最高即可.【解答】解:(1)甲民主评议的得分是:200×25%=50(分);乙民主评议的得分是:200×40%=80(分);丙民主评议的得分是:200×35%=70(分).(2)甲的成绩是:(75×4+93×3+50×3)÷(4+3+3)=729÷10=72.9(分)乙的成绩是:(80×4+70×3+80×3)÷(4+3+3)=770÷10=77(分)丙的成绩是:(90×4+68×3+70×3)÷(4+3+3)=774÷10=77.4(分)∵77.4>77>72.9,∴丙的得分最高.【点评】(1)此题主要考查了加权平均数、算术平均数的含义和求法的应用,要熟练掌握.(2)此题还考查了统计表和扇形统计图的应用,要熟练掌握,要注意从中获取信息,并能应用获取的信息解决实际问题.18.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:笔试面试体能甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.【考点】加权平均数.【答案】见试题解答内容【分析】(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;(2)由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【解答】解:(1)x甲=(83+79+90)÷3=84,x乙=(85+80+75)÷3=80,x丙=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.【点评】本题考查了算术平均数和加权平均数的计算.平均数等于所有数据的和除以数据的个数.19.为了解某中学学生对“厉行勤俭节约,反对铺张浪费”主题活动的参与情况.小强在全校范围内随机抽取了若干名学生并就某日午饭浪费饭菜情况进行了调查.将调查内容分为四组:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.根据调查结果,绘制了如图所示两幅尚不完整的统计图.回答下列问题:(1)这次被抽查的学生共有120人,扇形统计图中,“B组”所对应的圆心角的度数为72°;(2)补全条形统计图;(3)已知该中学共有学生2500人,请估计这日午饭有剩饭的学生人数;若按平均每人剩10克米饭计算,这日午饭将浪费多少千克米饭?【考点】加权平均数;用样本估计总体;扇形统计图;条形统计图.【答案】见试题解答内容【分析】(1)用A组人数除以它所占的百分比即可得到调查的总人数;求出B组所占的百分比,再乘以360°即可得出“B组”所对应的圆心角的度数;(2)用调查的总人数乘以C组所占的百分比得出C组的人数,进而补全条形统计图;(3)先求出这日午饭有剩饭的学生人数为:2500×(1﹣60%﹣10%)=750(人),再用人数乘每人平均剩10克米饭,把结果化为千克.【解答】解:(1)这次被抽查的学生数=72÷60%=120(人),“B组”所对应的圆心角的度数为:360°×24120故答案为120,72°;(2)C组的人数为:120×10%=12;条形统计图如下:(3)这日午饭有剩饭的学生人数为:2500×(1﹣60%﹣10%)=750(人),750×10=7500(克)=7.5(千克).答:这日午饭将浪费7.5千克米饭.【点评】本题考查了条形统计图和扇形统计图,从条形图可以很容易看出数据的大小,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.也考查了用样本估计总体.20.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲8880.4乙8993.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.(填“变大”、“变小”或“不变”).【考点】方差;算术平均数;中位数;众数.【专题】计算题.【答案】见试题解答内容【分析】(1)根据众数、平均数和中位数的定义求解;(2)根据方差的意义求解;(3)根据方差公式求解.【解答】解:(1)甲的众数为8,乙的平均数=15×(5+9+7+10+9)=8(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.故答案为:8,8,9;变小.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=1n[(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2]

考点卡片1.用样本估计总体用样本估计总体是统计的基本思想.1、用样本的频率分布估计总体分布:从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.2、用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差).一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.2.统计表统计表可以将大量数据的分类结果清晰,一目了然地表达出来.统计调查所得的原始资料,经过整理,得到说明社会现象及其发展过程的数据,把这些数据按一定的顺序排列在表格中,就形成“统计表”.统计表是表现数字资料整理结果的最常用的一种表格.统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.3.扇形统计图(1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.(2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.(3)制作扇形图的步骤①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°.②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;④在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.4.条形统计图(1)定义:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.(2)特点:从条形图可以很容易看出数据的大小,便于比较.(3)制作条形图的一般步骤:①根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论