版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2026年中考数学模拟试卷试题汇编——整式一.选择题(共10小题)1.下列说法中正确的个数是()(1)﹣a表示负数;(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3;(3)单项式-2xy2(4)若|x|=﹣x,则x<0.A.0个 B.1个 C.2个 D.3个2.下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a) B.(a+b)(﹣a﹣b) C.(﹣x﹣b)(x﹣b) D.(b+m)(m﹣b)3.若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89 B.﹣89 C.67 D.﹣674.多项式12x|m|-(m-4)x+7是关于A.4 B.﹣2 C.﹣4 D.4或﹣45.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8 B.a8﹣2a4b4+b8 C.a8+b8 D.a8﹣b86.若a+b=1,则a2﹣b2+2b的值为()A.4 B.3 C.1 D.07.已知a=120x+20,b=120x+19,c=120x+21,那么代数式a2+b2+c2﹣A.4 B.3 C.2 D.18.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4 B.8 C.12 D.169.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1 B.﹣2x2+5x+1 C.8x2﹣5x+1 D.2x2﹣5x﹣110.如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2 B.a2﹣b2=(a+b)(a﹣b) C.(a﹣b)2=a2﹣2ab+b2 D.(a+b)2=a2+2ab+b2二.填空题(共5小题)11.已知a+1a=3,则a2+1a212.x2+kx+9是完全平方式,则k=.13.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为.14.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是.15.我们知道,同底数幂的乘法法则为:am•an=am+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=23,则h(2)=(2)若h(1)=k(k≠0),那么h(n)•h(2017)=(用含n和k的代数式表示,其中n为正整数)三.解答题(共5小题)16.先化简,再求值:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中x=1,y=﹣2.17.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.18.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓展探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.19.若(x2+px-13)(x2﹣3x+q)的积中不含x项与x(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.20.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式.(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=.(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形z张边长分别为a、b的长方形纸片拼出一个面积为(5a+7b)(9a+4b)长方形,则x+y+z=.
2026年中考数学模拟试卷试题汇编——答案一.选择题(共10小题)题号12345678910答案ABCCBCBDDB一.选择题(共10小题)1.下列说法中正确的个数是()(1)﹣a表示负数;(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3;(3)单项式-2xy2(4)若|x|=﹣x,则x<0.A.0个 B.1个 C.2个 D.3个【考点】多项式;相反数;绝对值;单项式.【专题】数感;符号意识.【答案】A【分析】根据小于0的数是负数,可判断(1),根据多项式的次数,可判断(2),根据单项式的系数,可判断(3),根据绝对值,可判断(4).【解答】解:(1)﹣a不是负数,负数表示小于0的数,故(1)说法错误;(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是4,故(2)说法错误;(3)单项式-2xy29的系数为(4)若|x|=﹣x,x≤0,故(4)说法错误,故选:A.【点评】本题考查了多项式,根据定义求解是解题关键.2.下列乘法中,不能运用平方差公式进行运算的是()A.(x+a)(x﹣a) B.(a+b)(﹣a﹣b) C.(﹣x﹣b)(x﹣b) D.(b+m)(m﹣b)【考点】平方差公式.【答案】B【分析】根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数解答.【解答】解:A、C、D符合平方差公式的特点,故能运用平方差公式进行运算;B、两项都互为相反数,故不能运用平方差公式进行运算.故选:B.【点评】本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有.3.若a+b=10,ab=11,则代数式a2﹣ab+b2的值是()A.89 B.﹣89 C.67 D.﹣67【考点】完全平方公式.【专题】整式.【答案】C【分析】把a+b=10两边平方,利用完全平方公式化简,将ab=11代入求出a2+b2的值,代入原式计算即可得到结果.【解答】解:把a+b=10两边平方得:(a+b)2=a2+b2+2ab=100,把ab=11代入得:a2+b2=78,∴原式=78﹣11=67,故选:C.【点评】此题考查了完全平方公式的运用,熟练掌握完全平方公式的结构特征是解本题的关键.4.多项式12x|m|-(m-4)x+7是关于A.4 B.﹣2 C.﹣4 D.4或﹣4【考点】多项式.【答案】C【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【解答】解:∵多项式12x|m|∴|m|=4且﹣(m﹣4)≠0,∴m=﹣4.故选:C.【点评】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.5.计算(a﹣b)(a+b)(a2+b2)(a4﹣b4)的结果是()A.a8+2a4b4+b8 B.a8﹣2a4b4+b8 C.a8+b8 D.a8﹣b8【考点】平方差公式;完全平方公式.【答案】B【分析】这几个式子中,先把前两个式子相乘,这两个二项式中有一项完全相同,另一项互为相反数.相乘时符合平方差公式得到a2﹣b2,再把这个式子与a2+b2相乘又符合平方差公式,得到a4﹣b4,与最后一个因式相乘,可以用完全平方公式计算.【解答】解:(a﹣b)(a+b)(a2+b2)(a4﹣b4),=(a2﹣b2)(a2+b2)(a4﹣b4),=(a4﹣b4)2,=a8﹣2a4b4+b8.故选:B.【点评】本题主要考查了平方差公式的运用,本题难点在于连续运用平方差公式后再利用完全平方公式求解.6.若a+b=1,则a2﹣b2+2b的值为()A.4 B.3 C.1 D.0【考点】平方差公式.【答案】C【分析】首先利用平方差公式,求得a2﹣b2+2b=(a+b)(a﹣b)+2b,继而求得答案.【解答】解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.【点评】此题考查了平方差公式的应用.注意利用平方差公式将原式变形是关键.7.已知a=120x+20,b=120x+19,c=120x+21,那么代数式a2+b2+c2﹣A.4 B.3 C.2 D.1【考点】完全平方公式.【专题】压轴题.【答案】B【分析】已知条件中的几个式子有中间变量x,三个式子消去x即可得到:a﹣b=1,a﹣c=﹣1,b﹣c=﹣2,用这三个式子表示出已知的式子,即可求值.【解答】解:法一:a2+b2+c2﹣ab﹣bc﹣ac,=a(a﹣b)+b(b﹣c)+c(c﹣a),又由a=120x+20,b=120x+19,c得(a﹣b)=120x+20-120x﹣同理得:(b﹣c)=﹣2,(c﹣a)=1,所以原式=a﹣2b+c=120x+20﹣2(120x+19)+120故选B.法二:a2+b2+c2﹣ab﹣bc﹣ac,=12(2a2+2b2+2c2﹣2ab﹣2bc﹣2=12[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)=12[(a﹣b)2+(a﹣c)2+(b﹣c)2=12×(1+1+4故选:B.【点评】本题若直接代入求值会很麻烦,为此应根据式子特点选择合适的方法先进行化简整理,化繁为简,从而达到简化计算的效果,对完全平方公式的灵活运用是解题的关键.8.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4 B.8 C.12 D.16【考点】完全平方公式.【答案】D【分析】先把(x﹣2015)2+(x﹣2017)2=34变形为(x﹣2016+1)2+(x﹣2016﹣1)2=34,把(x﹣2016)看作一个整体,根据完全平方公式展开,得到关于(x﹣2016)2的方程,解方程即可求解.【解答】解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.【点评】考查了完全平方公式,本题关键是把(x﹣2015)2+(x﹣2017)2=34变形为(x﹣2016+1)2+(x﹣2016﹣1)2=34,注意整体思想的应用.9.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1 B.﹣2x2+5x+1 C.8x2﹣5x+1 D.2x2﹣5x﹣1【考点】整式的加减.【专题】计算题;运算能力.【答案】D【分析】根据和减去一个加数等于另一个加数,计算即可得到结果.【解答】解:根据题意得:(5x2+4x﹣1)﹣(3x2+9x)=5x2+4x﹣1﹣3x2﹣9x=2x2﹣5x﹣1.故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.如图,边长为a的大正方形剪去一个边长为b的小正方形后,将剩余部分通过割补拼成新的图形.根据图形能验证的等式为()A.a2﹣b2=(a﹣b)2 B.a2﹣b2=(a+b)(a﹣b) C.(a﹣b)2=a2﹣2ab+b2 D.(a+b)2=a2+2ab+b2【考点】平方差公式的几何背景.【专题】整式;推理能力.【答案】B【分析】边长为a的大正方形剪去一个边长为b的小正方形后的面积=a2﹣b2,新的图形面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;剩余部分通过割补拼成的平行四边形的面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积相等,∴a2﹣b2=(a+b)(a﹣b).故选:B.【点评】本题考查了利用几何方法验证平方差公式,解决问题的关键是根据拼接前后不同的几何图形的面积不变得到等量关系.二.填空题(共5小题)11.已知a+1a=3,则a2+1a2【考点】完全平方公式.【专题】常规题型.【答案】见试题解答内容【分析】把已知条件两边平方,然后整理即可求解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵a+1a∴a2+2+1a∴a2+1a2=9﹣故答案为:7.【点评】本题主要考查了完全平方公式,利用公式把已知条件两边平方是解题的关键.12.x2+kx+9是完全平方式,则k=±6.【考点】完全平方式.【答案】见试题解答内容【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3的积的2倍,故k=±6.【解答】解:中间一项为加上或减去x和3的积的2倍,故k=±6.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.13.若多项式2x2+3x+7的值为10,则多项式6x2+9x﹣7的值为2.【考点】整式的加减—化简求值.【答案】见试题解答内容【分析】由题意得2x2+3x=3,将6x2+9x﹣7变形为3(2x2+3x)﹣7可得出其值.【解答】解:由题意得:2x2+3x=36x2+9x﹣7=3(2x2+3x)﹣7=2.【点评】本题考查整式的加减,整体思想的运用是解决本题的关键.14.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是6.【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【专题】整式.【答案】见试题解答内容【分析】依据25a•52b=56,4b÷4c=4,即可得到a+b=3,b﹣c=1,a+c=2,再根据a2+ab+3c=a(a+b)+3c=3a+3c,即可得到结果.【解答】解:∵25a•52b=56,4b÷4c=4,∴52a+2b=56,4b﹣c=4,∴a+b=3,b﹣c=1,两式相减,可得a+c=2,∴a2+ab+3c=a(a+b)+3c=3a+3c=3×2=6,故答案为:6.【点评】本题主要考查了同底数幂的乘法法则以及同底数幂的除法法则的运用,同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减.15.我们知道,同底数幂的乘法法则为:am•an=am+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=23,则h(2)=49(2)若h(1)=k(k≠0),那么h(n)•h(2017)=kn+2017(用含n和k的代数式表示,其中n为正整数)【考点】同底数幂的乘法.【专题】新定义.【答案】见试题解答内容【分析】(1)将h(2)变形为h(1+1),再根据定义新运算:h(m+n)=h(m)•h(n)计算即可求解;(2)根据h(1)=k(k≠0),以及定义新运算:h(m+n)=h(m)•h(n)将原式变形为kn•k2017,再根据同底数幂的乘法法则计算即可求解.【解答】解:(1)∵h(1)=23,h(m+n)=h(m)•h(∴h(2)=h(1+1)=2(2)∵h(1)=k(k≠0),∴h(2)=h(1)•h(1)=k2,h(3)=h(2)•h(1)=k3,h(4)=h(3)•h(1)=k4,……h(n)=h(n﹣1)•h(1)=kn,∴h(n)•h(2017)=kn•k2017=kn+2017.故答案为:49;kn+2017【点评】考查了同底数幂的乘法,定义新运算,熟练掌握运算性质和法则是解题的关键.三.解答题(共5小题)16.先化简,再求值:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中x=1,y=﹣2.【考点】整式的加减—化简求值.【专题】整式;运算能力;应用意识.【答案】见试题解答内容【分析】去括号、合并同类项化简后代入求值即可.【解答】解:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy当x=1,y=﹣2时,原式=﹣6×1×(﹣2)=12.【点评】本题考查整式的加减,去括号、合并同类项是整式加减的基本方法.17.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【考点】完全平方公式.【答案】见试题解答内容【分析】(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.【点评】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.18.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是﹣(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓展探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【考点】整式的加减—化简求值.【专题】整式.【答案】见试题解答内容【分析】(1)利用整体思想,把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2即可得到结果;(2)原式可化为3(x2﹣2y)﹣21,把x2﹣2y=4整体代入即可;(3)依据a﹣2b=3,2b﹣c=﹣5,c﹣d=10,即可得到a﹣c=﹣2,2b﹣d=5,整体代入进行计算即可.【解答】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3①,2b﹣c=﹣5②,c﹣d=10③,由①+②可得a﹣c=﹣2,由②+③可得2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.【点评】本题主要考查了整式的化简求值问题,整体代入法是解决代数式求值问题的常用方法.19.若(x2+px-13)(x2﹣3x+q)的积中不含x项与x(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.【考点】多项式乘多项式.【答案】见试题解答内容【分析】(1)形开式子,找出x项与x3令其系数等于0求解.(2)把p,q的值入求解.【解答】解:(1)(x2+px-13)(x2﹣3x+q)=x4+(p﹣3)x3+(q﹣3p-13)x2+(qp+1)∵积中不含x项与x3项,∴p﹣3=0,qp+1=0∴p=3,q=-(2)(﹣2p2q)2+(3pq)﹣1+p2012q2014=[﹣2×32×(-13)]2+[3×3×(-1=36-=3579【点评】本题主要考查了多项式乘多项式,解题的关键是正确求出p,q的值20.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2=30.(4)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形z张边长分别为a、b的长方形纸片拼出一个面积为(5a+7b)(9a+4b)长方形,则x+y+z=156.【考点】完全平方公式的几何背景;多项式乘多项式.【专题】整式.【答案】见试题解答内容【分析】(1)依据正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,可得等式;(2)运用多项式乘多项式进行计算即可;(3)依据a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,进行计算即可;(4)依据所拼图形的面积为:xa2+yb2+zab,而(5a+7b)(9a+4b)=45a2+20ab+63ab+28b2=45a2+28b2+83ab,即可得到x,y,z的值.【解答】解:(1)∵正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)证明:(a+b+c)(a+b+c),=a2+ab+ac+ab+b2+bc+ac+bc+c2,=a2+b2+c2+2ab+2ac+2bc.(3)a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc,=102﹣2(ab+ac+bc),=100﹣2×35,=30.故答案为:30;(4)由题可知,所拼图形的面积为:xa2+yb2+zab,∵(5a+7b)(9a+4b),=45a2+20ab+63ab+28b2,=45a2+28b2+83ab,∴x=45,y=28,z=83.∴x+y+z=45+28+83=156.故答案为:156.【点评】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.
考点卡片1.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.2.绝对值(1)概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.(2)如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)3.单项式(1)单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.用字母表示的数,同一个字母在不同的式子中可以有不同的含义,相同的字母在同一个式子中表示相同的含义.(2)单项式的系数、次数单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.在判别单项式的系数时,要注意包括数字前面的符号,而形如a或﹣a这样的式子的系数是1或﹣1,不能误以为没有系数,一个单项式的次数是几,通常称这个单项式为几次单项式.4.多项式(1)几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.(2)多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.5.整式的加减(1)几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.(2)整式的加减实质上就是合并同类项.(3)整式加减的应用:①认真审题,弄清已知和未知的关系;②根据题意列出算式;③计算结果,根据结果解答实际问题.【规律方法】整式的加减步骤及注意问题1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.6.整式的加减—化简求值给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.7.同底数幂的乘法(1)同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.am•an=am+n(m,n是正整数)(2)推广:am•an•ap=am+n+p(m,n,p都是正整数)在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.(3)概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.8.幂的乘方与积的乘方(1)幂的乘方法则:底数不变,指数相乘.(am)n=amn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=anbn(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.9.同底数幂的除法同底数幂的除法法则:底数不变,指数相减.am÷an=am﹣n(a≠0,m,n是正整数,m>n)①底数a≠0,因为0不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省九江市2025-2026学年高三上学期11月期中考试政治试题(解析版)
- 2026年咨询工程师之宏观经济政策与发展规划考试题库500道含答案【基础题】
- 2026年一级建造师之一建水利水电工程实务考试题库500道(巩固)
- 2026年国家电网招聘之通信类考试题库300道及完整答案(各地真题)
- 2025年期货从业资格考试题库及参考答案【夺分金卷】
- 2026年一级建造师之一建矿业工程实务考试题库300道及完整答案【历年真题】
- 2026年国家电网招聘之文学哲学类考试题库300道带答案(突破训练)
- 2026年中国历史文化知识竞赛考试题库及参考答案(新)
- 2026年中级经济师之中级经济师金融专业考试题库300道及答案(有一套)
- 2026年计算机知识题库500道附完整答案(全优)
- 《婚姻家庭继承法(第八版)》课件全套 房绍坤
- 仓储部员工管理制度
- JG/T 381-2012建筑结构用冷成型焊接圆钢管
- 地铁保护专项施工方案中建A3版面
- 2025年湖北武汉市华中科技大学航空航天学院李仁府教授课题组招聘2人历年高频重点提升(共500题)附带答案详解
- 中华人民共和国史期末复习
- 五年级上册英语专项-语法专练-译林版
- RPA财务机器人开发与应用 课件 项目二 RPA财务机器人基础UiPath认知
- 个人分红收款收据
- 内科学(广东药科大学)智慧树知到期末考试答案章节答案2024年广东药科大学
- 人教版数学五年级上册《多边形的面积》单元作业设计()
评论
0/150
提交评论