版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆乌鲁木齐市四中2026届高一上数学期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,在中,D、E分别为线段、上的两点,且,,,则的值为().A. B.C. D.2.已知点,向量,若,则点的坐标为()A. B.C. D.3.下列说法正确的是A.棱柱被平面分成的两部分可以都是棱柱 B.底面是矩形的平行六面体是长方体C.棱柱的底面一定是平行四边形 D.棱锥的底面一定是三角形4.已知函数,则使成立的x的取值范围是()A. B.C. D.5.若:,则成立的一个充分不必要条件是()A. B.C. D.6.圆x2+y2-4x+6y=0和圆x2+y2-6x=0交于A,B两点,则AB的垂直平分线的方程是()A.x+y+3=0 B.2x-y-5=0C.3x-y-9=0 D.4x-3y+7=07.已知函数,,若对任意,总存在,使得成立,则实数取值范围为A. B.C. D.8.已知全集,,,则集合A. B.C. D.9.如图,在中,已知为上一点,且满足,则实数的值为A. B.C. D.10.当点在圆上变动时,它与定点的连线的中点的轨迹方程是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数.(1)若在上单调递减,则实数的取值范围是___________;(2)若的值域是,则实数的取值范围是___________.12.已知是半径为,圆角为扇形,是扇形弧上的动点,是扇形的接矩形,则的最大值为________.13.已知实数x、y满足,则的最小值为____________.14.已知是定义在上的奇函数,且为偶函数,对于函数有下列几种描述:①是周期函数;②是它的一条对称轴;③是它图象的一个对称中心;④当时,它一定取最大值;其中描述正确的是__________15.若,则______16.计算______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=x-(1)讨论并证明函数f(x)在区间(0,+∞)的单调性;(2)若对任意的x∈[1,+∞),f(mx)+mf(x)<0恒成立,求实数m的取值范围18.已知线段AB的端点A的坐标为,端点B是圆:上的动点.(1)求过A点且与圆相交时的弦长为的直线的方程(2)求线段AB中点M的轨迹方程,并说明它是什么图形19.计算下列各式:(1)(2)20.已知(1)当时,解关于的不等式;(2)当时,解关于的不等式21.已知全集U=R,集合,,求:(1)A∩B;(2).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由向量的线性运算可得=+,可得,又A,M,D三点共线,则存在b∈R,使得,则可建立关于a,b的方程组,即可求得a值,从而可得λ,μ,进而得解【详解】解:因为,,所以,,所以,所以,又A,M,D三点共线,则存在b∈R,使得,所以,解得,所以,因为,所以由平面向量基本定理可得λ=,μ=,所以λ+μ=故选:C2、B【解析】设点坐标为,利用向量的坐标运算建立方程组,解之可得选项.【详解】设点坐标为,,A,所以,又,,所以.解得,解得点坐标为.故选:B.3、A【解析】对于B.底面是矩形的平行六面体,它的侧面不一定是矩形,故它也不一定是长方体,故B错;对于C.棱柱的底面是平面多边形,不一定是平行四边形,故C错;对于D.棱锥的底面是平面多边形,不一定是三角形,故D错;故选A考点:1.命题的真假;2.空间几何体的特征4、C【解析】考虑是偶函数,其单调性是关于y轴对称的,只要判断出时的单调性,利用对称关系即可.【详解】,是偶函数;当时,由于增函数,是增函数,所以是增函数,是关于y轴对称的,当时,是减函数,作图如下:欲使得,只需,两边取平方,得,解得;故选:C.5、C【解析】根据不等式的解法求得不等式的解集,结合充分条件、必要条件的判定方法,即可求解.【详解】由题意,不等式,可得,解得,结合选项,不等式的一个充分不必要条件是.故选:C.6、C【解析】两圆公共弦的垂直平分线的方程即为两圆圆心所在直线的方程,求出两圆的圆心,从而可得答案.【详解】解:AB的垂直平分线的方程即为两圆圆心所在直线的方程,圆x2+y2-4x+6y=0的圆心为,圆x2+y2-6x=0的圆心为,则两圆圆心所在直线的方程为,即3x-y-9=0.故选:C.7、B【解析】分别求出在的值域,以及在的值域,令在的最大值不小于在的最大值,得到的关系式,解出即可.【详解】对于函数,当时,,由,可得,当时,,由,可得,对任意,,对于函数,,,,对于,使得,对任意,总存在,使得成立,,解得,实数的取值范围为,故选B【点睛】本题主要考查函数的最值、全称量词与存在量词的应用.属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.8、D【解析】因为A∪B={x|x≤0或x≥1},所以,故选D.考点:集合的运算.9、B【解析】所以,所以。故选B。10、D【解析】设中点的坐标为,则,利用在已知的圆上可得的中点的轨迹方程.【详解】设中点的坐标为,则,因为点在圆上,故,整理得到.故选:D.【点睛】求动点的轨迹方程,一般有直接法和间接法,(1)直接法,就是设出动点的坐标,已知条件可用动点的坐标表示,化简后可得动点的轨迹方程,化简过程中注意变量的范围要求.(2)间接法,有如下几种方法:①几何法:看动点是否满足一些几何性质,如圆锥曲线的定义等;②动点转移:设出动点的坐标,其余的点可以前者来表示,代入后者所在的曲线方程即可得到欲求的动点轨迹方程;③参数法:动点的横纵坐标都可以用某一个参数来表示,消去该参数即可动点的轨迹方程.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】(1)分析可知内层函数在上为减函数,且对任意的,恒成立,由此可得出关于实数的不等式组,由此可解得实数的取值范围;(2)分析可知为二次函数值域的子集,分、两种情况讨论,可得出关于实数的不等式组,综合可得出实数的取值范围.【详解】(1)令,.当时,,该函数为常值函数,不合乎题意.所以,,内层函数的对称轴为直线,由于函数在上单调递减,且外层函数为增函数,故内层函数在上为减函数,且对任意的,恒成立,所以,,解得;(2)因为函数的值域是,则为二次函数值域的子集.当时,内层函数为,不合乎题意;当时,则有,解得.综上所述,实数的取值范围是.故答案为:(1);(2).12、【解析】设,用表示出的长度,进而用三角函数表示出,结合辅助角公式即可求得最大值.【详解】设扇形的半径为,是扇形的接矩形则,所以则所以因为,所以所以当时,取得最大值故答案为:【点睛】本题考查了三角函数的应用,将边长转化为三角函数式,结合辅助角公式求得最值是常用方法,属于中档题.13、【解析】利用基本不等式可得,即求.【详解】依题意,当且仅当,即时等号成立.所以的最小值为.故答案为:.14、①③【解析】先对已知是定义在的奇函数,且为偶函数用定义转化为恒等式,再由两个恒等式进行合理变形得出与四个命题有关的结论,通过推理证得①③正确.【详解】因为为偶函数,所以,即是它的一条对称轴;又因为是定义在上的奇函数,所以,即,则,,即是周期函数,即①正确;因为是它的一条对称轴且,所以()是它的对称轴,即②错误;因为函数是奇函数且是以为周期周期函数,所以,所以是它图象的一个对称中心,即③正确;因为是它的一条对称轴,所以当时,函数取得最大值或最小值,即④不正确.故答案为:①③.15、【解析】由二倍角公式,商数关系得,再由诱导公式、商数关系变形求值式,代入已知可得【详解】,所以,故答案为:16、7【解析】根据对数与指数的运算性质计算即可得解.【详解】解:.故答案为:7.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)函数f(x)在(0,+∞)上单调递增,见解析(2)m<-1【解析】1利用单调性的定义,根据步骤,取值,作差,变形,定号下结论,即可得到结论;2原不等式等价于2mx-1mx-mx<0对任意的x∈[1,+∞)恒成立,整理得2mx2解析:(1)函数f(x)在(0,+∞)上单调递增证明:任取x2>x因为x2>x1>0,所以x所以函数f(x)在(0,+∞)上单调递增(2)原不等式等价于2mx-1mx-整理得2mx2-m-若m>0,则左边对应的函数开口向上,当x∈[1,+∞)时,必有大于0的函数值;所以m<0且2m-m-1所以m<-118、(1)或;(2)点M的轨迹是以(4,2)为圆心,半径为1的圆.【解析】⑴设直线的斜率为,求得直线的方程,再根据与圆相交的弦长为,求得圆心到直线的距离,求出即可得到直线的方程;⑵设出的坐标,确定动点之间坐标的关系,利用在圆上,可得结论;解析:(1)根据题意设直线的斜率为k,则直线的方程为,且与圆相交的弦长为,所以圆心到直线的距离为解得所以直线的方程为或(2)设∵M是线段AB的中点,又A(4,3)∴得又在圆上,则满足圆的方程∴整理得为点M的轨迹方程,点M的轨迹是以(4,2)为圆心,半径为1的圆点睛:本题考查了直线与圆的位置关系,并求出点的轨迹方程,在计算轨迹问题时的方法:用未知点坐标表示已知点坐标,然后代入原解析式即可求出关于动点的轨迹方程19、(1);(2).【解析】(1)运用指数幂运算性质进行计算即可;(2)运用对数的运算公式,结合换底公式进行求解即可.【小问1详解】原式;【小问2详解】原式.20、(1)或;(2)答案不唯一,具体见解析.【解析】(1)先因式分解,进而解出的范围,进而结合指数函数的单调性求得答案;(2)设,然后因式分解,进而讨论a的取值范围求出t的范围,最后结合指数函数的单调性求得答案.【小问1详解】当时,若可得或,即解集为或【小问2详解】令,不等式转化为①当时,不等式解集为;②当时,不等式解集为或;③当时,不等式解集为;④
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025 小学六年级语文下册 综合性学习 活动设计课件
- 【项目方案】233KWh 定制户外一体柜储能系统项目技术方案
- 注册会计师就业前景分析
- 跨境电商2025年海运整箱保险协议
- 2025 小学六年级语文上册综合性学习轻叩诗歌大门课件
- 科技研发终止协议2025年成果转化条款
- 2025 小学六年级语文上册借代修辞手法课件
- 浙江省丽水市2025年九年级上学期期末考试数学试卷附答案
- 股权架构方案(后附模板)
- 赣州医院面试题及答案
- 2026马年卡通特色期末评语(45条)
- 2025年杭州余杭水务有限公司招聘36人笔试参考题库及答案解析
- led屏安装施工步骤方案
- 2026年河北单招职业技能短视频制作实操题库含答案分镜头剪辑规范
- 2025 AHA心肺复苏与心血管急救指南
- 钢筋桁架楼承板专项施工方案
- 急性膀胱炎课件
- (新教材)2025年人教版三年级上册数学 数学广角:搭配问题 课件
- 【语文】小学一年级上册期末质量试卷
- 人教版(2024)七年级上册生物期末复习全册知识点梳理讲义
- 《产业经济学》课程论文选题、要求和评分标准
评论
0/150
提交评论