版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省常州市武进区礼嘉中学2026届高一上数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知偶函数在区间内单调递增,若,,,则的大小关系为()A. B.C. D.2.已知,若,则()A.或 B.3或5C.或5 D.33.已知函数(,且)在上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是A. B.[,]C.[,]{} D.[,){}4.已知函数,若,则实数的取值范围是A. B.C. D.5.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.若,,,则,,的大小关系是()A. B.C. D.7.已知函数的值域为,那么实数的取值范围是()A. B.[-1,2)C.(0,2) D.8.已知命题:函数过定点,命题:函数是幂函数,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知函数,则函数在上单调递增,是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件10.下列函数中,是奇函数且在区间上单调递减的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线与的夹角大小等于______12.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数的值域为.其中正确命题的编号为______13.写出一个周期为且值域为的函数解析式:_________14.已知,g(x)=x+t,设,若当x为正整数时,恒有h(5)≤h(x),则实数t的取值范围是_____________.15.已知平面,,直线,若,,则直线与平面的位置关系为______.16.幂函数f(x)的图象过点(4,2),则f(x)的解析式是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象的对称中心到对称轴的最小距离为.(1)求函数的解析式,并写出的单调区间;(2)求函数在区间上的最小值和最大值以及相对应的x值.18.已知函数的最小值为0(1)求a的值:(2)若在区间上的最大值为4,求m的最小值19.设全集实数集,,(1)当时,求和;(2)若,求实数的取值范围20.已知函数是定义在R上的奇函数.(1)求函数的解析式,判断并证明函数的单调性;(2)若存在实数,使成立,求实数的取值范围.21.计算:(1)(2)(3)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】先利用偶函数的对称性判断函数在区间内单调递减,结合偶函数定义得,再判断,和的大小关系,根据单调性比较函数值的大小,即得结果.【详解】偶函数的图象关于y轴对称,由在区间内单调递增可知,在区间内单调递减.,故,而,,即,故,由单调性知,即.故选:D.2、D【解析】根据分段函数的定义,分与两种情况讨论即可求解.【详解】解:由题意,当时,,解得或(舍去);当,,解得(舍去);综上,.故选:D.3、C【解析】由在上单调递减可知,由方程恰好有两个不相等的实数解,可知,,又时,抛物线与直线相切,也符合题意,∴实数的取值范围是,故选C.【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解4、D【解析】画出图象可得函数在实数集R上单调递增,故由,可得,即,解得或故实数的取值范围是.选D5、A【解析】根据终边相同的角的三角函数值相等,结合充分不必要条件的定义,即可得到答案;【详解】,当,“”是“”的充分不必要条件,故选:A6、A【解析】根据指数函数、对数函数的单调性,结合题意,即可得x,y,z的大小关系,即可得答案.【详解】因为在上为单调递增函数,且,所以,即,因为在R上为单调递增函数,且,所以,即,又,所以.故选:A7、B【解析】先求出函数的值域,而的值域为,进而得,由此可求出的取值范围.【详解】解:因为函数的值域为,而的值域为,所以,解得,故选:B【点睛】此题考查由分段函数的值域求参数的取值范围,分段函数的值域等于各段上的函数的值域的并集是解此题的关键,属于基础题.8、B【解析】根据幂函数的性质,从充分性与必要性两个方面分析判断.【详解】若函数是幂函数,则过定点;当函数过定点时,则不一定是幂函数,例如一次函数,所以是的必要不充分条件.故选:B.9、A【解析】根据充分、必要条件的定义证明即可.【详解】因为函数在上单调递增,则,恒成立,即恒成立,,即.所以“”是“”的充分不必要条件.故选:A.10、C【解析】根据函数的单调性和奇偶性对各个选项逐一分析即可.【详解】对A,函数的图象关于轴对称,故是偶函数,故A错误;对B,函数的定义域为不关于原点对称,故是非奇非偶函数,故B错误;对C,函数的图象关于原点对称,故是奇函数,且在上单调递减,故C正确;对D,函数的图象关于原点对称,故是奇函数,但在上单调递增,故D错误.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由直四棱柱的底面是边长为1的正方形,侧棱长可得由知就是异面直线与的夹角,且所以=60°,即异面直线与的夹角大小等于60°.考点:1正四棱柱;2异面直线所成角12、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.13、【解析】根据函数的周期性和值域,在三角函数中确定一个解析式即可【详解】解:函数的周期为,值域为,,则的值域为,,故答案为:14、[-5,-3]【解析】作出的图象,如图,设与的交点横坐标为,则在时,总有,所以当时,有,,由,得;当当时,有,,由,得,综上,,故答案为:.15、【解析】根据面面平行的性质即可判断.【详解】若,则与没有公共点,,则与没有公共点,故.故答案为:.【点睛】本题考查面面平行的性质,属于基础题.16、【解析】根据幂函数的概念设f(x)=xα,将点的坐标代入即可求得α值,从而求得函数解析式【详解】设f(x)=xα,∵幂函数y=f(x)的图象过点(4,2),∴4α=2∴α=这个函数解析式为故答案为【点睛】本题主要考查了待定系数法求幂函数解析式、指数方程解法等知识,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),增区间为,,减区间为,;(2)最小值为,此时;最大值为,此时.【解析】(1)根据题意求得的最小正周期,即可求得与解析式,再求函数单调区间即可;(2)根据(1)中所求,可得在区间的单调性,结合单调性,即可求得函数的最值以及对应的值.【小问1详解】设的周期为T,则,所以,即,所以函数的解折式是.令,解得,故的增区间为,,令,解得,的减区间为,.【小问2详解】由(1)可知,的减区间为,,单调增区间为,,又因为,所以的单调递增区间为,单调递减区间为.又因为,所以,,故函数在区间上的最小值为,此时,最大值为.此时.18、(1)2(2)【解析】(1)根据辅助角公式化简,由正弦型函数的最值求解即可;(2)由所给自变量的范围及函数由最大值4,确定即可求解.【小问1详解】,,解得.【小问2详解】由(1)知,当时,,,,解得,.19、(1),;(2).【解析】把代入集合B,求出集合B的解集,再根据交集和并集的定义进行求解;因为,可知,求出,再根据子集的性质进行求解;【详解】(1)由题意,可得,当时,,则,若,则或,、当时,,满足A.当时,,又,则综上,【点睛】本题主要考查了交集和并集的定义以及子集的性质,其中解答中熟记集合的运算,以及合理分类讨论是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于基础题.20、(1),函数在上单调递减,证明见解析(2)【解析】(1)由为奇函数且定义域为R,则,即可求得,进而得到解析式;设,代入解析式中证得即可;(2)由奇函数,可将问题转化为,再利用单调性可得存在实数,使成立,即为存在实数,使成立,进而求解即可【详解】解:(1)为奇函数且定义域为R,所以,即,所以,所以,所以函数在R上单调递减,设,则,因为,所以,即,所以,所以,即,所以函数在上单调递减.(2)存在实数,使成立.由题,则存在实数,使成立,因为为奇函数,所以成立,又因为函数在R上单调递减,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年湖北能源集团股份有限公司社会招聘备考题库(含答案详解)
- 钦州市2026年市直中学教师专场招聘备考题库及完整答案详解一套
- 2026年四川省儿童医院(四川省儿童医学中心)耳鼻喉内镜技师招聘备考题库完整答案详解
- 华东材料有限公司2026届校园招聘8人备考题库及答案详解(夺冠系列)
- 2026年唐山智算科技有限公司劳务派遣岗位(招投标专员、交付经理)招聘备考题库含答案详解
- 2026年中国科大物理学院劳务派遣岗位招聘备考题库及答案详解1套
- 大理护理职业学院招募2026年春季学期职业教育银龄教师的备考题库及一套参考答案详解
- 2026年石家庄市桥西区振头社区卫生服务中心招聘备考题库及答案详解参考
- 惠州市第一妇幼保健院2025年公开招聘第二批员额制卫生专业技术人员备考题库及答案详解(新)
- 2026年大唐(内蒙古)能源开发有限公司招聘若干人(锡盟)备考题库及一套答案详解
- 互联网新技术新业务安全评估管理办法
- 2019年9月13日抚州市三方面人员转副科笔试真题及答案解析
- 2026年计算机操作员(中级)自测试题及答案
- 2025年应急管理专业知识考试试卷及答案
- 糖尿病足溃疡预防与足部减压护理专家共识课件
- 2025-2026学年仁爱科普版(新教材)初中英语八年级上册期末测试卷附答案
- 采购塑料压块合同范本
- (2025版)混合性认知障碍诊治专家共识解读课件
- 2025广西公需科目真题(含答案)
- 初级电工证考试试题及答案2025年
- 2025至2030中国船用防冻剂行业项目调研及市场前景预测评估报告
评论
0/150
提交评论