版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南邵阳县德望中学高二上数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数恰好有个不同的零点,则的取值范围是()A. B.C. D.2.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:㎝).根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110㎝的株树大约是()A.3000 B.6000C.7000 D.80003.命题“,均有”的否定为()A.,均有 B.,使得C.,使得 D.,均有4.已知命题“”为真命题,“”为真命题,则()A.为假命题,为真命题 B.为真命题,为真命题C.为真命题,为假命题 D.为假命题,为假命题5.美学四大构件是:史诗、音乐、造型(绘画、建筑等)和数学.素描是学习绘画的必要一步,它包括明暗素描和结构素描,而学习几何体结构素描是学习素描最重要的一步.某同学在画切面圆柱体(用与圆柱底面不平行的平面去截圆柱,底面与截面之间的部分叫做切面圆柱体,原圆柱的母线被截面所截剩余的部分称为切面圆柱体的母线)的过程中,发现“切面”是一个椭圆,若切面圆柱体的最长母线与最短母线所确定的平面截切面圆柱体得到的截面图形是有一个底角为60度的直角梯形,则该椭圆的离心率为()A. B.C. D.6.已知等差数列,若,,则()A.1 B.C. D.37.直线与圆相切,则实数等于()A.或 B.或C.3或5 D.5或38.已知双曲线的离心率为2,则C的渐近线方程为()A. B.C. D.9.已知,命题“若,则,全为0”的否命题是()A.若,则,全不为0. B.若,不全为0,则.C.若,则,不全为0. D.若,则,全不为0.10.已知数列的前n项和为,且对任意正整数n都有,若,则()A.2019 B.2020C.2021 D.202211.已知等边三角形的一个顶点在椭圆E上,另两个顶点位于E的两个焦点处,则E的离心率为()A. B.C. D.12.已知双曲线,则双曲线的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.日常生活中的饮用水通常是经过净化的.随着水的纯净度的提高,所需净化费用不断増加.已知将吨水净化到纯净度为时所需费用(单位:元)为.则净化到纯净度为时所需费用的瞬时变化率是净化到纯净度为时所需费用的瞬时变化率的___________倍,这说明,水的纯净度越高,净化费用增加的速度越___________(填“快”或“慢”).14.抛物线上的点到其焦点的最短距离为_________.15.已知正方体的棱长为2,E为线段中点,F为线段BC上动点,则(1)的最小值为______;(2)点F到直线DE距离的最小值为______.16.等差数列,的前项和分别为,,且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,不等式恒成立,求实数的取值范围;(2)解关于的不等式:.18.(12分)已知数列是公比为正数的等比数列,且,.(1)求数列通项公式;(2)若,求数列的前项和.19.(12分)如图,在直三棱柱中,,,D为的中点(1)求证:平面;(2)求平面与平面的夹角的余弦值;(3)若E为的中点,求与所成的角20.(12分)如图所示的四棱锥的底面是一个等腰梯形,,且,是△的中线,点E是棱的中点(1)证明:∥平面(2)若平面平面,且,求平面与平面夹角余弦值(3)在(2)条件下,求点D到平面的距离21.(12分)已知是数列的前n项和,且.(1)求数列的通项公式;(2)若,求的前n项和.22.(10分)已知抛物线的焦点为F,点在C上(1)求p的值及F的坐标;(2)过F且斜率为的直线l与C交于A,B两点(A在第一象限),求
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】分析可知,直线与函数的图象有个交点,利用导数分析函数的单调性与极值,数形结合可求得实数的取值范围.【详解】令,可得,构造函数,其中,由题意可知,直线与函数的图象有个交点,,由,可得或,列表如下:增极大值减极小值增所以,,,作出直线与函数的图象如下图所示:由图可知,当时,即当时,直线与函数的图象有个交点,即函数有个零点.故选:D.2、C【解析】先由频率分布直方图得到抽取的样本中底部周长小于110㎝的概率,进而可求出结果.【详解】由频率分布直方图可得,样本中底部周长小于110㎝的概率为,因此在这片树木中,底部周长小于110㎝的株树大约是.故选:C.【点睛】本题主要考查频率分布直方图的应用,属于基础题型.3、C【解析】全称命题的否定是特称命题【详解】根据全称命题的否定是特称命题,所以命题“,均有”的否定为“,使得”故选:C4、A【解析】根据复合命题的真假表即可得出结果.【详解】若“”为真命题,则为假命题,又“”为真命题,则至少有一个真命题,所以为真命题,即为假命题,为真命题.故选:A5、A【解析】设圆柱的底面半径为,由题意知,,椭圆的长轴长,短轴长为,可以求出的值,即可得离心率.【详解】设圆柱的底面半径为,依题意知,最长母线与最短母线所在截面如图所示从而因此在椭圆中长轴长,短轴长,,故选:A【点睛】本题主要考查了椭圆的定义和椭圆离心力的求解,属于基础题.6、C【解析】利用等差数列的通项公式进行求解.【详解】设等差数列的公差为,因为,,所以,解得.故选:C.7、C【解析】先求出圆的圆心和半径,再利用圆心到直线的距离等于半径列方程可求得结果【详解】由,得,则圆心为,半径为2,因为直线与圆相切,所以,得,解得或,故选:C8、A【解析】根据离心率及a,b,c的关系,可求得,代入即可得答案.【详解】因为离心率,所以,所以,,则,所以C的渐近线方程为.故选:A9、C【解析】根据四种命题的关系求解.【详解】因为否命题是否定原命题的条件和结论,所以命题“若,则,全为0”的否命题是:若,则,不全为0,故选:C10、C【解析】先令代入中,求得,再根据递推式得到,将与已知相减,可判断数列是等比数列,进而确定,求得答案.【详解】因为,令,则,又,故,即,故数列是等比数列,则,所以,所以,故选:C.11、B【解析】根据已知条件求得的关系式,从而求得椭圆的离心率.【详解】依题意可知,所以.故选:B12、D【解析】由双曲线的方程及双曲线的离心率即可求解.【详解】解:因为双曲线,所以,所以双曲线的离心率,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.快【解析】根据导数的概念可知净化所需费用的瞬时变化率即为函数的一阶导数,即先对函数求导,然后将和代入进行计算,再求,即可得到结果,进而能够判断水的纯净度越高,净化费用增加的速度的快慢【详解】由题意,可知净化所需费用的瞬时变化率为,所以,,所以,所以净化到纯净度为时所需费用的瞬时变化率是净化到纯净度为时所需费用的瞬时变化率的倍;因为,可知水的纯净度越高,净化费用增加的速度越快.故答案为:,快.14、1【解析】设出抛物线上点的坐标,利用两点间距离公式建立函数关系,借助函数性质计算作答.【详解】抛物线的焦点,设点为抛物线上任意一点,于是有,当且仅当时取“=”,所以当,即点P为抛物线顶点时,取最小值1.故答案为:115、①.;②..【解析】建立空间直角坐标系.空一:利用空间两点间距离公式,结合平面两点间距离公式进行求解即可;空二:根据空间向量垂直的性质进行求解即可.【详解】建立如图所示的空间直角坐标系,则有.空一:,代数式表示横轴上一点到点和点的距离之和,如下图所示:设关于横轴的对称点为,当线段与横轴的交点为点时,有最小值,最小值为;空二:设,为垂足,则有,,,因为,所以,因此,化简得:,当时,即时,此时,有最小值,即最小值为,故答案为:;【点睛】关键点睛:利用空间向量垂直的性质进行求解是解题的关键.16、【解析】取,代入计算得到答案.【详解】,当时故答案为【点睛】本题考查了前项和和通项的关系,取是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析.【解析】(1)由题设可得,进而可知在恒成立,即可求参数范围.(2)题设不等式等价于,讨论的大小并根据一元二次不等式的解法求解集即可.【小问1详解】当时,得,即.由,则,∴,即,∴,即,∴实数的取值范围是.【小问2详解】由,即,即.①当时,不等式解集为;②当时,不等式的解集为;③当时,不等式的解集为.综上,当时﹐不等式的解集为;当时,不等式的解集为﹔当时,不等式的解集为.18、(1);(2).【解析】(1)根据题意,通过解方程求出公比,即可求解;(2)根据题意,求出,结合组合法求和,即可求解.【小问1详解】根据题意,设公比为,且,∵,,∴,解得或(舍),∴.【小问2详解】根据题意,得,故,因此.19、(1)证明见解析(2)(3)【解析】(1)连接,交于O,连接OD,根据中位线的性质,可证,根据线面平行的判定定理,即可得证;(2)如图建系,求得各点坐标,进而可求得平面与平面法向量,根据二面角的向量求法,即可得答案;(3)求得坐标,根据线线角的向量求法,即可得答案.【小问1详解】连接,交于O,连接OD,则O为的中点,在中,因为O、D分别为、BC中点,所以,又因为平面,平面,所以平面【小问2详解】由题意得,两两垂直,以B为原点,为x,y,z轴正方向建系,如图所示:设,则,所以,则,,因为平面在平面ABC内,且平面ABC,所以即为平面的一个法向量,设平面的一个法向量为,则,所以,令,则,所以法向量,所以,由图象可得平面与平面的夹角为锐角,所以平面与平面的夹角的余弦值为【小问3详解】由(2)可得,设与所成的角为,则,解得,所以与所成的角为20、(1)证明见解析;(2);(3).【解析】(1)连接、,平行四边形的性质、线面平行的判定可得平面、平面,再根据面面平行的判定可得平面平面,利用面面平行的性质可证结论;(2)取的中点为,连接,证明出平面,,以为坐标原点,、、的方向分别为轴、轴、轴的正方向建立空间直角坐标系,利用空间向量法可求得平面与平面所成锐二面角的余弦值.(3)利用等体积法,求D到平面的距离【小问1详解】连接、,由、分别是棱、的中点,则,平面,平面,则平面又,且,∴且,四边形是平行四边形,则,平面,平面,则平面又,可得平面平面.又平面∴平面【小问2详解】由知:,又平面平面,平面平面,平面,∴平面取的中点为,连接、,由且,故四边形为平行四边形,故,则△为等边三角形,故,以为坐标原点,、、的方向分别为轴、轴、轴的正方向建立如图所示的空间直角坐标系易知,,所以、、、、,,,,设平面的法向量为,则,令,得设平面的法向量为,则,令,得设平面与平面所成的锐二面角为.则,即平面与平面所成锐二面角的余弦值为【小问3详解】由(2)知:平面,则是三棱锥的高且,四边形为平行四边形,又,即为菱形,∴,而,则,且,∴,故.又,由上易知:△为等腰三角形且,∴,则D到平面的距离.21、(1)(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 市场销售团队激励方案与效果评估
- 小学生综合能力测评方案详解
- 施工组织设计方案优化与风险控制策略
- 市场营销策略调整方案及实例分享
- 班级绿色植物养护德育实践活动方案
- 智能制造项目实施方案及流程
- 儿童歌曲教学活动方案设计实例
- 装配式建筑交叉作业模块化施工方案
- 冷库地面装饰施工方案
- 城市公共服务设施绿色建设施工方案
- 合肥市瑶海区S社区居家养老服务站建设研究:现状、问题与优化路径
- 果园防草布采购合同范本
- 《黄土原位测试规程》
- 冀教版(2024)三年级上册《称量物体》单元测试(含解析)
- 数学-湖南长郡中学、杭州二中、南师附中三校2025届高三4月联考试题+答案
- 医学三维可视化与虚拟现实技术:革新肝癌腹腔镜手术的探索与实践
- 统编版(2024)八年级上册历史新教材全册知识点复习提纲
- 水平定向钻施工技术应用与管理
- 风险金管理办法
- 校长在食堂从业人员培训会上的讲话
- (高清版)DBJ∕T 13-91-2025 《福建省房屋市政工程安全风险分级管控与隐患排查治理标准》
评论
0/150
提交评论