福建省宁德宁市-同心顺-六校联盟2026届高三上数学期末质量跟踪监视模拟试题含解析_第1页
福建省宁德宁市-同心顺-六校联盟2026届高三上数学期末质量跟踪监视模拟试题含解析_第2页
福建省宁德宁市-同心顺-六校联盟2026届高三上数学期末质量跟踪监视模拟试题含解析_第3页
福建省宁德宁市-同心顺-六校联盟2026届高三上数学期末质量跟踪监视模拟试题含解析_第4页
福建省宁德宁市-同心顺-六校联盟2026届高三上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省宁德宁市-同心顺-六校联盟2026届高三上数学期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某四棱锥的三视图如图所示,则该四棱锥的体积为()A. B. C. D.2.已知直线与圆有公共点,则的最大值为()A.4 B. C. D.3.设,分别为双曲线(a>0,b>0)的左、右焦点,过点作圆的切线与双曲线的左支交于点P,若,则双曲线的离心率为()A. B. C. D.4.执行如图所示的程序框图,输出的结果为()A. B.4 C. D.5.已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,,则的面积为()A. B. C. D.6.从抛物线上一点(点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为()A. B. C. D.7.根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u=lny,v=(x-4)2,利用最小二乘法,得到线性回归方程为=0.5v+2,则变量y的最大值的估计值是()A.e B.e2 C.ln2 D.2ln28.将函数的图像向右平移个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,若为奇函数,则的最小值为()A. B. C. D.9.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A.72 B.64 C.48 D.3210.下列不等式正确的是()A. B.C. D.11.已知,,,则a,b,c的大小关系为()A. B. C. D.12.若双曲线的焦距为,则的一个焦点到一条渐近线的距离为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中项的系数为_______.14.已知双曲线的一条渐近线为,则焦点到这条渐近线的距离为_____.15.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为________.16.已知是同一球面上的四个点,其中平面,是正三角形,,则该球的表面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,,,,和均为边长为的等边三角形.(1)求证:平面平面;(2)求二面角的余弦值.18.(12分)已知集合,集合.(1)求集合;(2)若,求实数的取值范围.19.(12分)在直角坐标系中,直线l过点,且倾斜角为,以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.求直线l的参数方程和曲线C的直角坐标方程,并判断曲线C是什么曲线;设直线l与曲线C相交与M,N两点,当,求的值.20.(12分)已知都是大于零的实数.(1)证明;(2)若,证明.21.(12分)在锐角中,分别是角的对边,,,且.(1)求角的大小;(2)求函数的值域.22.(10分)已知矩阵的一个特征值为4,求矩阵A的逆矩阵.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积.【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.【点睛】本题考查了利用三视图求几何体体积的问题,是基础题.2、C【解析】

根据表示圆和直线与圆有公共点,得到,再利用二次函数的性质求解.【详解】因为表示圆,所以,解得,因为直线与圆有公共点,所以圆心到直线的距离,即,解得,此时,因为,在递增,所以的最大值.故选:C【点睛】本题主要考查圆的方程,直线与圆的位置关系以及二次函数的性质,还考查了运算求解的能力,属于中档题.3、C【解析】

设过点作圆的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【详解】设过点作圆的切线的切点为,,所以是中点,,,.故选:C.【点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.4、A【解析】

模拟执行程序框图,依次写出每次循环得到的的值,当,,退出循环,输出结果.【详解】程序运行过程如下:,;,;,;,;,;,;,,退出循环,输出结果为,故选:A.【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.5、A【解析】

根据可知,再利用抛物线的焦半径公式以及三角形面积公式求解即可.【详解】由题意可知抛物线方程为,设点点,则由抛物线定义知,,则.由得,则.又MN为过焦点的弦,所以,则,所以.故选:A【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.6、A【解析】

根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.【详解】设点的坐标为,由题意知,焦点,准线方程,所以,解得,把点代入抛物线方程可得,,因为,所以,所以点坐标为,代入斜率公式可得,.故选:A【点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.7、B【解析】

将u=lny,v=(x-4)2代入线性回归方程=-0.5v+2,利用指数函数和二次函数的性质可得最大估计值.【详解】解:将u=lny,v=(x4)2代入线性回归方程=0.5v+2得:,即,当时,取到最大值2,因为在上单调递增,则取到最大值.故选:B.【点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.8、C【解析】

根据三角函数的变换规则表示出,根据是奇函数,可得的取值,再求其最小值.【详解】解:由题意知,将函数的图像向右平移个单位长度,得,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,,因为是奇函数,所以,解得,因为,所以的最小值为.故选:【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题.9、B【解析】

由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。【详解】由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,所以几何体的体积为,故选B。【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。10、D【解析】

根据,利用排除法,即可求解.【详解】由,可排除A、B、C选项,又由,所以.故选D.【点睛】本题主要考查了三角函数的图象与性质,以及对数的比较大小问题,其中解答熟记三角函数与对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.11、D【解析】

与中间值1比较,可用换底公式化为同底数对数,再比较大小.【详解】,,又,∴,即,∴.故选:D.【点睛】本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较.12、B【解析】

根据焦距即可求得参数,再根据点到直线的距离公式即可求得结果.【详解】因为双曲线的焦距为,故可得,解得,不妨取;又焦点,其中一条渐近线为,由点到直线的距离公式即可求的.故选:B.【点睛】本题考查由双曲线的焦距求方程,以及双曲线的几何性质,属综合基础题.二、填空题:本题共4小题,每小题5分,共20分。13、40【解析】

根据二项定理展开式,求得r的值,进而求得系数.【详解】根据二项定理展开式的通项式得所以,解得所以系数【点睛】本题考查了二项式定理的简单应用,属于基础题.14、2.【解析】

由双曲线的一条渐近线为,解得.求出双曲线的右焦点,利用点到直线的距离公式求解即可.【详解】双曲线的一条渐近线为解得:双曲线的右焦点为焦点到这条渐近线的距离为:本题正确结果:【点睛】本题考查了双曲线和的标准方程及其性质,涉及到点到直线距离公式的考查,属于基础题.15、【解析】

根据三视图知该几何体是三棱柱与半圆锥的组合体,结合图中数据求出它的体积.【详解】根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示:结合图中数据,计算它的体积为.故答案为:.【点睛】本题考查了根据三视图求简单组合体的体积应用问题,是基础题.16、【解析】

求得等边三角形的外接圆半径,利用勾股定理求得三棱锥外接球的半径,进而求得外接球的表面积.【详解】设是等边三角形的外心,则球心在其正上方处.设,由正弦定理得.所以得三棱锥外接球的半径,所以外接球的表面积为.故答案为:【点睛】本小题主要考查几何体外接球表面积的计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】

(1)取的中点,连接,要证平面平面,转证平面,即证,即可;(2)以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,分别求出平面与平面的法向量,代入公式,即可得到结果.【详解】(1)取的中点,连接,因为均为边长为的等边三角形,所以,,且因为,所以,所以,又因为,平面,平面,所以平面.又因为平面,所以平面平面.(2)因为,为等边三角形,所以,又因为,所以,,在中,由正弦定理,得:,所以.以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,则,,,,,设平面的法向量为,则,即,令,则平面的一个法向量为,依题意,平面的一个法向量所以故二面角的余弦值为.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18、(1);(2).【解析】

(1)求出函数的定义域,即可求出结论;(2)化简集合,根据确定集合的端点位置,建立的不等量关系,即可求解.【详解】(1)由,即得或,所以集合或.(2)集合,由得或,解得或,所以实数的取值范围为.【点睛】本题考查集合的运算,集合间的关系求参数,考查函数的定义域,属于基础题.19、(Ⅰ)曲线是焦点在轴上的椭圆;(Ⅱ).【解析】试题分析:(1)由题易知,直线的参数方程为,(为参数),;曲线的直角坐标方程为,椭圆;(2)将直线代入椭圆得到,所以,解得.试题解析:(Ⅰ)直线的参数方程为.曲线的直角坐标方程为,即,所以曲线是焦点在轴上的椭圆.(Ⅱ)将的参数方程代入曲线的直角坐标方程为得,,得,,20、(1)答案见解析.(2)答案见解析【解析】

(1)利用基本不等式可得,两式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【详解】(1)两式相加得(2)由(1)知于是,.【点睛】本题考查了基本不等式的应用,属于基础题.21、(1);(2)【解析】

(1)由向量平行的坐标表示、正弦定理边化角和两角和差正弦公式可化简求得,进而得到;(2)利用两角和差余弦公式、二倍角和辅助角公式化简函数为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论